China Custom China Supply High-Power 2 Kw 220V AC Servo Motor with Driver for Industrial Machine wholesaler

Product Description

Product Description

 high-power 2 KW 220V AC servo motor with driver



Model no. Rated Voltage(V) Output Power(w) Rated Torque(N.m) Rated Speed(RPM) Length(mm) Shaft DIA(mm)
130AEA10571-SH3 220 1000 4 2500 166 22
130AEA10015-SH3 220 950 6 1500 213 22
130AEA15571-SH3 220 1500 6 2500 179 22
130AEA20571-SH3 220 2000 7.7 2500 192 22
130AEA15015-SH3 220 1500 10 1500 213 22
130AEA23015-SH3 220 2300 15 1500 241 22
130AEA26571-SH3 220 2600 10 2500 209 22
130AEA38571-SH3 220 3800 15 2500 231 22



Size of Motor:

Size of Driver:

 The function of AC servo motor driver.


The input power Single phase or 3 phase AC220V -15~+10% 50/60Hz
environment temperature Using: 0~55 Storage: -20~80
humidity Below 90% RH No dewing
vibration Belown0.5G(4.9m/S2),10-60 no continue running

Control mode

1 Torque mode (internal or external)
2 speed mode (internal or external)
3 Position mode (internal orexternal)
4 Position/velocity model
5 Position/torque model

6 Speed/torque model

Control input

servo enables,alarm reset,

Forward driving is prohibited,

Reverse driving is prohibited ,

External CHINAMFG torque is limited ,

external reverse torque is limited,

Emergency stop,

Zero speed clamp ,

1 Internal speed command option 1,

2 Internal speed command option 2

3 Internal speed command option 3,

1 The internal torque command option 1

2 The internal torque command option 2

Control mode switch,

Gain switch,

1 Electronic gear molecular option 1,

2 Electronic gear molecular option 2,Instructions for,

Position deviation to clear,

Pulse input is prohibited,

Proportional control,

The CHINAMFG return to trigger,

The CHINAMFG return reference point.

1 Internal location option 1,

2 Internal location option 2,

Trigger internal position command,

Suspend internal position command

Control the output

Alarm detection,

Servo ready,

Emergency stop checked out,

Positioning to complete,

Speed to reach,

Reach the predetermined torque,

Zero speed detection,

Servo motor current,

Electromagnetic brake,

The CHINAMFG return to complete,

Located close to,

torque limit,

speed limit,

Tracking arrive torque command

The encoder feedback 2500p/r,15 line increment model, differential output
Communication mode RS-232 OR RS-485
Display and operation 1.five LED display 2.Four buttons
Braking way Through the internal/external braking resistance braking energy
Cooling way Air cooled (heat transfer film, the strong cold wind fan)
Power range ≤7.5KW

Installation environment conditions
1.Working environment: 0 ~ and ;working environment: less than 80% (no condensation)
2.Storage environment temperature:- ; Storage environment humidity: 80% of the (no condensation)
3.Vibration: Below 0.5 G
4.Well ventilated, less moisture and dust place

5.No corrosive, flash gas, oil and gas, cuttingfluid, iron powder and so on environment
6.No moisture and direct sunlight place


Installation method
1.Level installation:to avoid liquids such as water, oil from motor wire end into the motor internal, please will cable outlet inbelow
2.Vertical installation: if the motor shaft and the installation with reduction unit, must pay attention to and prevent reducer in mark through the motor shaft into the motor internal
3.The motor shaft out quantitymust be thoroughly, if insufficient out to motor sports generates vibration
4.Installation and remove the motor, please do not use hammer knock motor, otherwise easy to cause damage to themotor shaft and encoder


The motor direction of rotation
Looking from the motor load on the motor shaft and counterclockwise (CCW) for the forward, clockwise (the CW) as the reverse.


Packaging & Shipping



Our Services






Company Information


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase


.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China Custom China Supply High-Power 2 Kw 220V AC Servo Motor with Driver for Industrial Machine   wholesaler China Custom China Supply High-Power 2 Kw 220V AC Servo Motor with Driver for Industrial Machine   wholesaler
editor by CX 2024-04-04