Tag Archives: motor servo

China Good quality 110 Series Three Phase AC Servo Motor vacuum pump distributors

Product Description

Product characteristics
   Ultra-high intrinsic coercivity, high temperature rare earth permanent,magnet material, strong resistance to magnetic energy.Using electromagnetic design optimization, aimost with the entire speed,range constant torque output,Sinusoidal magnet field design, smooth low-speed torque high overload, capability,Class F insulation, IP55 protection structure, environmental applicability, safe and reliable use.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Starting Mode: Direct on-line Starting
Customization:
Available

|

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China Good quality 110 Series Three Phase AC Servo Motor   vacuum pump distributorsChina Good quality 110 Series Three Phase AC Servo Motor   vacuum pump distributors
editor by CX 2024-04-23

China OEM 2kw Whole New CHINAMFG AC Servo Motor Jsma-MB20abk00 for Mask Making Machine supplier

Product Description

Overview

Place of Origin:ZheJiang , China
Brand Name:Teco
Model Number:JSMA-MB20ABK00
Type:Servo Motor
Frequency:50-60hz
Phase:Three-phase
Certification:CCC, CE, ROHS, CE FCC ROHS
Protect Feature:Drip-proof
AC Voltage:208-230 / 240 V
Efficiency:IE 3
Weight:8KG
Warranty:1 Year
Packing:Packaging Cartons
Application:CNC Machine
Brand:Teco
MOQ:1pcs
Moment of inertia:9.55n.m
Product Keywords:Teco servo motor
output current:9.18A

2KW Whole New CHINAMFG AC Servo Motor JSMA-MB20ABK00 For Mask Making Machine

Technique Datas

Company Information

     As 1 of the most professional planetary gearbox manufacture in China, CHINAMFG Science and Technology Co. Ltd. has been specializing in this field for over 10 year. Our factory, which has very proven technique of producing planetary gear box, has pretty strong research and development ability. Since our decades of hardworking, nowadays we have developed long term business relationship with many customers from all over the world. In Europe, our reducers are widely used to replace famous brand precision planetary gearbox, such as NEUGART, to build new cnc machines, machinery arms and robots, because of our good quality and price.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China OEM 2kw Whole New CHINAMFG AC Servo Motor Jsma-MB20abk00 for Mask Making Machine   supplier China OEM 2kw Whole New CHINAMFG AC Servo Motor Jsma-MB20abk00 for Mask Making Machine   supplier
editor by CX 2024-04-19

China Custom 60st-M00630 IP65 200W AC Servo Motor with Hot selling

Product Description

Brushless Servo Motor Series 60ST-M
Specification Unit  60ST-M00630 60ST-M01330 60ST-M01930
Rated voltage U V 220VAC -15%-+10% 50/60Hz (300VDC)
Rated output power P out W 200 400 600
Rated speed n N rpm 3000 3000 3000
Rated current I N A 1.27 2.5 3.73
Rated torque T N N.m 0.64 1.27 1.91
Peak current I P A 3.69 7.33 11
Peak torque T p N.m 1.91 3.82 5.73
Rotor inertia J Kg.cm 2 0.17 0.3 0.44
Encoder CPR  2500 2500 2500
IP Code IP65 IP65 IP65
Winding class Class B  Continuous
Motor weight Kg 1 1.4 1.8
Remark Motor are available with different winding and mechanical modification to meet specific applications.

Lead-wires’ Spec To Encoder
Color BLU BLU GRN GRN YLW YLW BRN BRN GRY GRY WHT WHT RED BLK Shield
/BLK /BLK /BLK /BLK /BLK /BLK
Description A+ A- B+ B- Z+ Z- U+ U- V+ V- W+ W- Vcc GND Shield
Plug Pin# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To Motor
Color RED YLW BLU YLW/GRN
Description U V W GND
Plug Pin# 1 2 3 4

FAQ
Q: How to order?
A: send us inquiry → receive our quotation → negotiate details → confirm the sample → sign contract/deposit → mass production → cargo ready → balance/delivery → further cooperation.

Q: How about Sample order?
A: Sample is available for you. please contact us for details. 

Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Post,Sea are available.The other shipping ways are also available, please contact us if you need ship by the other shipping way. 

Q: How long is the deliver?
A: Devliver time depends on the quantity you order. usually it takes 15-25 working days.

Q: My package has missing products. What can I do?
A: Please contact our support team and we will confirm your order with the package contents.We apologize for any inconveniences. 

Q: How to confirm the payment?
A: We accept payment by T/T, PayPal, the other payment ways also could be accepted,Please contact us before you pay by the other payment ways. Also 30-50% deposit is available, the balance money should be paid before shipping. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Function: Driving
Casing Protection: Closed Type
Certification: ISO9001, CCC, SGS
Brand: Sunrise Motor
Samples:
US$ 115/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

What are the safety considerations when working with or around AC motors?

Working with or around AC motors requires careful attention to safety to prevent accidents, injuries, and electrical hazards. Here are some important safety considerations to keep in mind:

  • Electrical Hazards: AC motors operate on high voltage electrical systems, which pose a significant electrical hazard. It is essential to follow proper lockout/tagout procedures when working on motors to ensure that they are de-energized and cannot accidentally start up. Only qualified personnel should perform electrical work on motors, and they should use appropriate personal protective equipment (PPE), such as insulated gloves, safety glasses, and arc flash protection, to protect themselves from electrical shocks and arc flash incidents.
  • Mechanical Hazards: AC motors often drive mechanical equipment, such as pumps, fans, or conveyors, which can present mechanical hazards. When working on or near motors, it is crucial to be aware of rotating parts, belts, pulleys, or couplings that can cause entanglement or crushing injuries. Guards and safety barriers should be in place to prevent accidental contact with moving parts, and proper machine guarding principles should be followed. Lockout/tagout procedures should also be applied to the associated mechanical equipment to ensure it is safely de-energized during maintenance or repair.
  • Fire and Thermal Hazards: AC motors can generate heat during operation, and in some cases, excessive heat can pose a fire hazard. It is important to ensure that motors are adequately ventilated to dissipate heat and prevent overheating. Motor enclosures and cooling systems should be inspected regularly to ensure proper functioning. Additionally, combustible materials should be kept away from motors to reduce the risk of fire. If a motor shows signs of overheating or emits a burning smell, it should be immediately shut down and inspected by a qualified professional.
  • Proper Installation and Grounding: AC motors should be installed and grounded correctly to ensure electrical safety. Motors should be installed according to manufacturer guidelines, including proper alignment, mounting, and connection of electrical cables. Adequate grounding is essential to prevent electrical shocks and ensure the safe dissipation of fault currents. Grounding conductors, such as grounding rods or grounding straps, should be properly installed and regularly inspected to maintain their integrity.
  • Safe Handling and Lifting: AC motors can be heavy and require proper handling and lifting techniques to prevent musculoskeletal injuries. When moving or lifting motors, equipment such as cranes, hoists, or forklifts should be used, and personnel should be trained in safe lifting practices. It is important to avoid overexertion and use proper lifting tools, such as slings or lifting straps, to distribute the weight evenly and prevent strain or injury.
  • Training and Awareness: Proper training and awareness are critical for working safely with or around AC motors. Workers should receive training on electrical safety, lockout/tagout procedures, personal protective equipment usage, and safe work practices. They should be familiar with the specific hazards associated with AC motors and understand the appropriate safety precautions to take. Regular safety meetings and reminders can help reinforce safe practices and keep safety at the forefront of everyone’s minds.

It is important to note that the safety considerations mentioned above are general guidelines. Specific safety requirements may vary depending on the motor size, voltage, and the specific workplace regulations and standards in place. It is crucial to consult relevant safety codes, regulations, and industry best practices to ensure compliance and maintain a safe working environment when working with or around AC motors.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China Custom 60st-M00630 IP65 200W AC Servo Motor   with Hot selling	China Custom 60st-M00630 IP65 200W AC Servo Motor   with Hot selling
editor by CX 2024-04-13

China OEM Jkids60 Modbus-RTU RS485 Servo Motor with Driver 100W 200W 400W 11.2A 1.27nm Integrated AC/DC Servo Motor with Controller with Hot selling

Product Description

Product Description

Model naming rules for low voltage integrated dc servo motor

1. Company name abbreviation
2. Product series model, indicating that the motor is an IDS series, referring to the acronym for integrated DC servo
3. Frame number (42/57/60/80), expressed in millimeters by the dimensions of the motor casing and mounting plate
4. Control method optional (P/R/C) P represents pulse, R represents RS485, and C represents CANopen bus
5. The motor model, such as (01/02/03/04/05/06), represents the model of the motor 6.Encoder type: A represents a 17 bit single turn absolute encoder

 

Characteristics of Integrated Dc Servo Motor

1. Compact: Integrated design of integrated drive motor Easy installation, small footprint, and simple wiring.

2. Multiple motion control modes: Supports the CiA402 standard protocol, including Relative position mode, absolute position mode, speed Mode, torque mode, and CHINAMFG regression mode.

3. low-power consumption: Adopting low internal resistance MOS to ensure motor performance Excellent torque utilization while reducing motor power consumption And heat generation, effectively extending the service life of

the motor.

4. control mode: Supports pulse/RS485/CANopen.

5. Multi segment position speed function: With multi segment position function and multi segment speed function.

6. Safe and reliable: Driver built-in in place and alarm output signal Convenient for upper computer detection and control built-in Multiple alarm functions such as over differential, over undervoltage, and over temperature Can ensure the safe operation of processing equipment.
 

Integrated solution for precision control motors

 

Traditional split solution

Features:

1.  Adopting a new 32-bit M4+core with 120M or 240M main frequency
2. Stable torque characteristics from low to high speeds, with high speed and precision
3. Equipped with brake resistor interface to prevent damage to the electromechanical braking system
4. Wide speed range, low temperature rise, and high efficiency
5. Integrated motor and drive, compact size, simple wiring, and drive Good compatibility with the motor
6. Equipped with overcurrent, overvoltage, over temperature, and over differential protection functions
7. Configure a 17bit single turn absolute encoder

 

Communication method:

1. Pulse type

2. RS485 MOdbus RTU network type

3. CANopen network type

 

Protection level:

Waterproof type: IP30, IP54, IP65, optional

 

Usage:

Medical equipment, logistics transportation, industrial automation, textile machinery, laser, drawing, traditional Chinese
medicine ingredient industry, etc

Product Parameters

42mm Integrated Servo Motor (Gearbox optional)

Model Power (W) Rated Voltage (VDC) Rated Current (A) Rated Speed (rpm) Rated Torque (N.m) Total height L (mm) Encoder Control method (optional)
JKIDS42-P01A 26 24 1.8 4000 0.0625 61 17bit Pulse RS485 CANopen
JKIDS42-P02A 53 24 3.3 4000 0.125 81 17bit Pulse RS485 CANopen
JKIDS42-P03A 78 24 4.5 4000 0.185 101 17bit Pulse RS485 CANopen
JKIDS42-P04A 78 24 4.5 3000 0.25 120 17bit Pulse RS485 CANopen

Product Drawing
Product Images

57mm Integrated Servo Motor (Gearbox / Brake optional) 

Model Power (W) Rated Voltage (VDC) Rated Current (A) Rated Speed (rpm) Rated Torque (N.m) Total height L (mm) Encoder Control method (optional)
JKIDS57-P01A 91 24/36 3.5 3000 0.29 101 17bit pulse RS485 CANopen
JKIDS57-P02A 140 24/36 5.4 3000 0.45 121 17bit pulse RS485 CANopen
JKIDS57-P03A 200 36/48 7.5 3000 0.64 141 17bit pulse RS485 CANopen

Product Drawing
Product Images

60mm Integrated Servo Motor (Gearbox / Brake / Cooling Fan optional) 

Model Power (W) Rated Voltage (VDC) Rated Current (A) Rated Speed (rpm) Rated Torque (N.m) Total height L (mm) Encoder Control method (optional)
JKIDS60-P01A 200 24 12 3000 0.64 94 17bit pulse RS485 CANopen
JKIDS60-P02A 400 48 11 3000 1.27 112 17bit pulse RS485 CANopen

Product Drawing
Product Images

80mm Integrated Servo Motor (Gearbox / Brake / Cooling Fan optional) 

Model Power (W) Rated Voltage (VDC) Rated Current (A) Rated Speed (rpm) Rated Torque (N.m) Total height L (mm) Encoder Control method (optional)
JKIDS80-P01A 750 48/72 19/12 3000 2.4 155 17bit pulse RS485 CANopen
JKIDS80-P02A 1000 72 17 3000 3.2 175 17bit pulse RS485 CANopen

Product Drawing
Product Images

 

 

 

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:

Production Flow:

Certification:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Power Tools, Medical Equipment
Operating Speed: High Speed
Excitation Mode: Shunt
Samples:
US$ 90/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China OEM Jkids60 Modbus-RTU RS485 Servo Motor with Driver 100W 200W 400W 11.2A 1.27nm Integrated AC/DC Servo Motor with Controller   with Hot selling	China OEM Jkids60 Modbus-RTU RS485 Servo Motor with Driver 100W 200W 400W 11.2A 1.27nm Integrated AC/DC Servo Motor with Controller   with Hot selling
editor by CX 2024-04-12

China Standard High Speed NEMA24 48V AC 400W 1.27n. M 3000rpm Electric Brushless CNC Servo Motor for Robotic Arm vacuum pump for ac

Product Description

High speed nema24 48V AC 4; Cel: ;

FAQ:

 1. Factory or trader?
We are factory, and have professional R&D team as introduced in company information.

2. How about the delivery?
– Sample: 3-5 days.
– Bulk order: 15-30 days.

3. What is your after-sales services?
1. Free maintenance within 12 months guarantee, lifetime consultant.
2. Professional solutions in installation and maintence.

4. Why choose us?
1. Factory Price & 24/7 after-sale services.
2. From mold customization to material processing and welding, from fine components to finished assembly, 72 processes, 24 control points, strict aging, finished product inspection.

5. Do you get the relevant certification?
All products are made according to ISO9001, CE requirements.

If any terms get your interest, please CLICK BELOW to send a message to us!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Robotic Arm
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 8
Samples:
US$ 92/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Standard High Speed NEMA24 48V AC 400W 1.27n. M 3000rpm Electric Brushless CNC Servo Motor for Robotic Arm   vacuum pump for ac	China Standard High Speed NEMA24 48V AC 400W 1.27n. M 3000rpm Electric Brushless CNC Servo Motor for Robotic Arm   vacuum pump for ac
editor by CX 2024-04-11

China Standard in Stock CHINAMFG Original AC Servo Motor Hc-Sfs52 vacuum pump ac

Product Description

In stock CHINAMFG original AC Servo Motor HC-SFS52
We can supply Inverter ,Servo Motor,PLC and HMI at good price, please feel free to contact us!
 

Product Parameters

Product Name Servo Motor
Brand Mitsubishi
Model HC-SFS52
Series HC
Warranty 1 Year
Application Industrial Ect
Technical consulting support Yes

 

Real Picture

Company Profile

ZheJiang CHINAMFG Xing Trading Co.,Ltd is a professional supplier of Inverter,Servo Motor,PLC And HMI with 20 years production experience.
Our main products Inverter,Servo Motor,PLC And HMI are widely applied to the field of industrial automation control.
We guaranteed 100% new brand original, and we have a lot of stock with fast delivery. The technical support and after sale service
is provided and customer’s questions will be responded in the first time.

 

Main Products:

1. Servo system products
2. Linear motion products
3. Sensor products
4. Frequency converter, PLC,

FAQ

1.Q: How about the warranty ?

A: Aiwell provide 12 months warranty for all the goods from us , and you can refund the goods with any quality problem in 15 days.

2.Q: Other supplier have a better pice than yours.

A: “To create more benefit fir clients”is our belief, if you have a better price , please let Aiwell know , we will try best to meet your price and support you.

3.Q: We have not cooperated before , how can we believe you ?

A: For our first order , you can pay after we prepare the goods.

4.Q: What about shipment ?

A: We have DHL forwarder with competitive price , of course , cutsomers can also use their own freight forwarders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China Standard in Stock CHINAMFG Original AC Servo Motor Hc-Sfs52   vacuum pump acChina Standard in Stock CHINAMFG Original AC Servo Motor Hc-Sfs52   vacuum pump ac
editor by CX 2024-04-10

China Professional High Quality Factory Price 130mm AC Servo Motor for Sewing Machine vacuum pump oil near me

Product Description

MODEL 130SE510
571
130SE515
571
130SE520
571
130SE530
571
130SE530
015
130SE630
015
130SE630
015
Rated Power(kW) 1 1.5 2 3 3 3 3
Rated Voltage(V) 220 220 220 220 220 380 380
Rated Speed(rpm) 2000 2000 2000 2000 1500 1500 2000
MAX Speed(rpm) 3500 3000 3000 2500 2500 2500 2500
Rated TORQUE(N.m) 4.78 7.16 9.55 14.33 19.1 19.1 14.33
Maximum Torque(N.m) 14.34 17.9 23.88 35.83 38.2 38.2 28.66
Rated Current(A) 5.6 7.2 10.2 11 16.8 9.8 10
Rotor Inertia(×10-4kg.m2) 6.1 7.9 11.1 13.2 13.2 15.8 11.4
Rotor Inertia(×10-4kg.m2)(Brake) 6.4 8.2 11.4 13.5 13.5 17.1 13.6
Torque Constant(N.m/A) 0.85 0.99 0.94 1.3 1.13 1.95 1.43
Back EMF(V/krpm) 54.7 62.5 56.6 81.9 71.1 124.8 89.5
Resistance(Ohm) 0.96 0.75 0.49 0.48 0.46 1.26 1.07
Inductance(mH) 10.5 8.5 5.6 6.1 5.5 20.9 11.43
Electrical Constant(ms) 10.9 11.3 11.4 12.7 11.9 16.6 10.68
Insulation Class F
IP Rating IP54/IP65(oil seal)

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: High Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 180/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

What are the safety considerations when working with or around AC motors?

Working with or around AC motors requires careful attention to safety to prevent accidents, injuries, and electrical hazards. Here are some important safety considerations to keep in mind:

  • Electrical Hazards: AC motors operate on high voltage electrical systems, which pose a significant electrical hazard. It is essential to follow proper lockout/tagout procedures when working on motors to ensure that they are de-energized and cannot accidentally start up. Only qualified personnel should perform electrical work on motors, and they should use appropriate personal protective equipment (PPE), such as insulated gloves, safety glasses, and arc flash protection, to protect themselves from electrical shocks and arc flash incidents.
  • Mechanical Hazards: AC motors often drive mechanical equipment, such as pumps, fans, or conveyors, which can present mechanical hazards. When working on or near motors, it is crucial to be aware of rotating parts, belts, pulleys, or couplings that can cause entanglement or crushing injuries. Guards and safety barriers should be in place to prevent accidental contact with moving parts, and proper machine guarding principles should be followed. Lockout/tagout procedures should also be applied to the associated mechanical equipment to ensure it is safely de-energized during maintenance or repair.
  • Fire and Thermal Hazards: AC motors can generate heat during operation, and in some cases, excessive heat can pose a fire hazard. It is important to ensure that motors are adequately ventilated to dissipate heat and prevent overheating. Motor enclosures and cooling systems should be inspected regularly to ensure proper functioning. Additionally, combustible materials should be kept away from motors to reduce the risk of fire. If a motor shows signs of overheating or emits a burning smell, it should be immediately shut down and inspected by a qualified professional.
  • Proper Installation and Grounding: AC motors should be installed and grounded correctly to ensure electrical safety. Motors should be installed according to manufacturer guidelines, including proper alignment, mounting, and connection of electrical cables. Adequate grounding is essential to prevent electrical shocks and ensure the safe dissipation of fault currents. Grounding conductors, such as grounding rods or grounding straps, should be properly installed and regularly inspected to maintain their integrity.
  • Safe Handling and Lifting: AC motors can be heavy and require proper handling and lifting techniques to prevent musculoskeletal injuries. When moving or lifting motors, equipment such as cranes, hoists, or forklifts should be used, and personnel should be trained in safe lifting practices. It is important to avoid overexertion and use proper lifting tools, such as slings or lifting straps, to distribute the weight evenly and prevent strain or injury.
  • Training and Awareness: Proper training and awareness are critical for working safely with or around AC motors. Workers should receive training on electrical safety, lockout/tagout procedures, personal protective equipment usage, and safe work practices. They should be familiar with the specific hazards associated with AC motors and understand the appropriate safety precautions to take. Regular safety meetings and reminders can help reinforce safe practices and keep safety at the forefront of everyone’s minds.

It is important to note that the safety considerations mentioned above are general guidelines. Specific safety requirements may vary depending on the motor size, voltage, and the specific workplace regulations and standards in place. It is crucial to consult relevant safety codes, regulations, and industry best practices to ensure compliance and maintain a safe working environment when working with or around AC motors.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Professional High Quality Factory Price 130mm AC Servo Motor for Sewing Machine   vacuum pump oil near me		China Professional High Quality Factory Price 130mm AC Servo Motor for Sewing Machine   vacuum pump oil near me
editor by CX 2024-04-08

China Custom China Supply High-Power 2 Kw 220V AC Servo Motor with Driver for Industrial Machine wholesaler

Product Description

Product Description

 high-power 2 KW 220V AC servo motor with driver

Details:

 

Model no. Rated Voltage(V) Output Power(w) Rated Torque(N.m) Rated Speed(RPM) Length(mm) Shaft DIA(mm)
130AEA10571-SH3 220 1000 4 2500 166 22
130AEA10015-SH3 220 950 6 1500 213 22
130AEA15571-SH3 220 1500 6 2500 179 22
130AEA20571-SH3 220 2000 7.7 2500 192 22
130AEA15015-SH3 220 1500 10 1500 213 22
130AEA23015-SH3 220 2300 15 1500 241 22
130AEA26571-SH3 220 2600 10 2500 209 22
130AEA38571-SH3 220 3800 15 2500 231 22

 

 

Size of Motor:

Size of Driver:

 The function of AC servo motor driver.

 

The input power Single phase or 3 phase AC220V -15~+10% 50/60Hz
environment temperature Using: 0~55 Storage: -20~80
humidity Below 90% RH No dewing
vibration Belown0.5G(4.9m/S2),10-60 no continue running

Control mode

1 Torque mode (internal or external)
2 speed mode (internal or external)
3 Position mode (internal orexternal)
4 Position/velocity model
5 Position/torque model

6 Speed/torque model

Control input

servo enables,alarm reset,

Forward driving is prohibited,

Reverse driving is prohibited ,

External CHINAMFG torque is limited ,

external reverse torque is limited,

Emergency stop,

Zero speed clamp ,

1 Internal speed command option 1,

2 Internal speed command option 2

3 Internal speed command option 3,

1 The internal torque command option 1

2 The internal torque command option 2

Control mode switch,

Gain switch,

1 Electronic gear molecular option 1,

2 Electronic gear molecular option 2,Instructions for,

Position deviation to clear,

Pulse input is prohibited,

Proportional control,

The CHINAMFG return to trigger,

The CHINAMFG return reference point.

1 Internal location option 1,

2 Internal location option 2,

Trigger internal position command,

Suspend internal position command

Control the output

Alarm detection,

Servo ready,

Emergency stop checked out,

Positioning to complete,

Speed to reach,

Reach the predetermined torque,

Zero speed detection,

Servo motor current,

Electromagnetic brake,

The CHINAMFG return to complete,

Located close to,

torque limit,

speed limit,

Tracking arrive torque command

The encoder feedback 2500p/r,15 line increment model, differential output
Communication mode RS-232 OR RS-485
Display and operation 1.five LED display 2.Four buttons
Braking way Through the internal/external braking resistance braking energy
Cooling way Air cooled (heat transfer film, the strong cold wind fan)
Power range ≤7.5KW

Installation environment conditions
1.Working environment: 0 ~ and ;working environment: less than 80% (no condensation)
2.Storage environment temperature:- ; Storage environment humidity: 80% of the (no condensation)
3.Vibration: Below 0.5 G
4.Well ventilated, less moisture and dust place

5.No corrosive, flash gas, oil and gas, cuttingfluid, iron powder and so on environment
6.No moisture and direct sunlight place

 

Installation method
1.Level installation:to avoid liquids such as water, oil from motor wire end into the motor internal, please will cable outlet inbelow
2.Vertical installation: if the motor shaft and the installation with reduction unit, must pay attention to and prevent reducer in mark through the motor shaft into the motor internal
3.The motor shaft out quantitymust be thoroughly, if insufficient out to motor sports generates vibration
4.Installation and remove the motor, please do not use hammer knock motor, otherwise easy to cause damage to themotor shaft and encoder

 

The motor direction of rotation
Looking from the motor load on the motor shaft and counterclockwise (CCW) for the forward, clockwise (the CW) as the reverse.

 

Packaging & Shipping

 

 

Our Services

 

 

Certifications

 

 

Company Information

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Are there different types of AC motors, and what are their specific applications?

Yes, there are different types of AC motors, each with its own design, characteristics, and applications. The main types of AC motors include:

  1. Induction Motors: Induction motors are the most commonly used type of AC motor. They are robust, reliable, and suitable for a wide range of applications. Induction motors operate based on the principle of electromagnetic induction. They consist of a stator with stator windings and a rotor with short-circuited conductive bars or coils. The rotating magnetic field produced by the stator windings induces currents in the rotor, creating a magnetic field that interacts with the stator field and generates torque. Induction motors are widely used in industries such as manufacturing, HVAC systems, pumps, fans, compressors, and conveyor systems.
  2. Synchronous Motors: Synchronous motors are another type of AC motor commonly used in applications that require precise speed control. They operate at synchronous speed, which is determined by the frequency of the AC power supply and the number of motor poles. Synchronous motors have a rotor with electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed. Synchronous motors are often used in applications such as industrial machinery, generators, compressors, and large HVAC systems.
  3. Brushless DC Motors: While the name suggests “DC,” brushless DC motors are actually driven by AC power. They utilize electronic commutation instead of mechanical brushes for switching the current in the motor windings. Brushless DC motors offer high efficiency, low maintenance, and precise control over speed and torque. They are commonly used in applications such as electric vehicles, robotics, computer disk drives, aerospace systems, and consumer electronics.
  4. Universal Motors: Universal motors are versatile motors that can operate on both AC and DC power. They are designed with a wound stator and a commutator rotor. Universal motors offer high starting torque and can achieve high speeds. They are commonly used in applications such as portable power tools, vacuum cleaners, food mixers, and small appliances.
  5. Shaded Pole Motors: Shaded pole motors are simple and inexpensive AC motors. They have a single-phase stator and a squirrel cage rotor. Shaded pole motors are characterized by low starting torque and relatively low efficiency. Due to their simple design and low cost, they are commonly used in applications such as small fans, refrigeration equipment, and appliances.

These are some of the main types of AC motors, each with its unique features and applications. The selection of an AC motor type depends on factors such as the required torque, speed control requirements, efficiency, cost, and environmental conditions. Understanding the specific characteristics and applications of each type allows for choosing the most suitable motor for a given application.

China Custom China Supply High-Power 2 Kw 220V AC Servo Motor with Driver for Industrial Machine   wholesaler China Custom China Supply High-Power 2 Kw 220V AC Servo Motor with Driver for Industrial Machine   wholesaler
editor by CX 2024-04-04

China factory 1/8 1/6 1/4 1/3 1/2 1 2 3 4 5 10 12 15 20 22 25 100 HP Industrial Asynchronous AC Motor Three Phase Brushless Servo Electric Motor for Motorcycle Vehicle supplier

Product Description

Product Description

Three-Phase Motor is an electric motor driven by a three-phase AC power source.
They are widely used as power sources for industrial equipment and machinery. Also called three-phase induction motors (induction motors), they are generally powered by a three-phase AC power supply of 200 V, 110V, 380V and so on.
Three-Phase Motors consist of a stator, rotor, output shaft, flange bracket, and ball bearings.

YS (MS), YE3, Y4 Motor Series

YS (MS), YE3, YE4 series three-phase asynchronous motors with Aluminum housing adopted the newest design and high quality material.lt is conformity with the IEC 34-1 standards. The efficiency of the motors can meet EFF2 and EFF1 if requested. That good features: perfect performance low noises light vibration, reliable running, good appearance, small volume and light weight.

YEJ Brake Motor Series

Brake motor is made of 2 parts: three-phase asynchronous motors and brake, it belongs to three-phase-asynchronous motor derived series. Manual brake release and bolt release are 2 forms of brake. Brake is the main components of the brake motor. Its working power divided into 2 categories: One is AC braking, the other is DC braking.  Our company produces brake motors are DC brake motors, the advantage of the braking torque is below, easy installation, braking response speed, high reliability, versatility and other advantages.

To the Ac power to the brake coil is provided with suction cups for low voltage winding rated DC voltage. A single-phase AC power is rectified then supply to a sucker winding to make it work so the brake motor terminal box fitted with a rectifier, wiring diagram below.Brake motor braking time (t) is the time from the motor and brake stopping the power to the shaft completely stopped, under normal circumstances, for 63 to 880 frame size motor, the braking time is 0.5 seconds. For o-132 frame size motor the braking time is 1 second, For 160 to180 frame size motor, the braking time is 2 seconds.

YVP Frequency Conversion Motor Series

YVP speed has become the popular way, can be widely used in various industries continuously variable transmission.
In the variable frequency motor speed control system, using power electronic inverter as a power supply is inevitable that there will be high harmonics, harmonic greater impact on the motor. Mainly reflected in the magnetic circuit and the circuit harmonic magnetic potential harmonic currents. Different amplitudes and frequencies of harmonic currents and magnetic flux will cause the motor stator copper loss rotor aluminum consumption. These losses of the motor efficiency and power factor reduction, the majority of these losses into heat, causing additional heating of the motor, causing the motor temperature increases, the increase in temperature generally 10~20%. As a result of electromagnetic interference power, conduction and radiation, the stator winding insulation aging, resulting in deterioration of the common-mode voltage and leakage current of accelerated beaning, bearing perishable, while the motor screaming. Since harmonic electromagnetic torque constant harmonic electromagnetic torque and vibration harmonic MMFs and rear rotor harmonic current synthesis. The torque of the motor torque will generate pulsating issued, so that the motor speed vibration is low.
Our produce YS, IE2, IE3, IE4 Series Universal three-phase asynchronous motor design, our main consideration is the motor overload, starting performance, efficiency and power factor. Another major consideration for non-sinusoidal motor power adaptability. Suppose the influence of higher harmonic current to the motor. Since the motor is increased when the working
Temperature of the low-frequency region, class F insulation dl ass above, the use of polymer insulation materials and vacuum pressure impregnation process, and the use of special insulation structure. Ln order to reduce the electromagnetic torque ripple, improve the precision mechanical parts to improve the quality level constant. high-precision bearing mute. n order to eliminate vibration motor, the motor structure to strengthen the overall design.

Operating conditions:

Ambient temperature: -15ºC<0<40ºC Duty:  S1 (continuous)
Altitude: not exceed1000m Insulation class:  B/F/H
Rated voltage: 380V, 220V-760Vis available Protection class: lP54/IP55
Rated frequency: 50HZ/60HZ Cooling method:  IC0141

Production Flow

Product Overall & Installation Dimensions:

YS/MS Series:

 

Frame size lnstallation Dimensions B3 (mm ) lnstallation Dimensions B5 (mm ) lnstallation Dimension B14 (mm ) Mounting Dimensions  (mm )
A B C D E F G H K M N P S T M N P S T AB AC AD HD L
56 90 71 36 9 20 3 7.2 56 5.8 100 80 120 7 3 65 50 80 M5 2.5 110 120 100 155 195
63 100 80 40 11 23 4 8.5 63 7 115 95 140 10 3 75 60 90 M5 2.5 125 130 100 165 215
71 112 90 45 14 30 5 11 71 7 130 110 160 10 3.5 85 70 105 M6 2.5 140 150 110 185 246
80 125 100 50 19 40 6 15.5 80 10 165 130 200 12 3.5 100 80 120 M6 3 160 170 135 215 285
90S 140 100 56 24 50 8 20 90 10 165 130 200 12 3.5 115 95 140 M8 3 178 185 137 226 335
90L 140 125 56 24 50 8 20 90 10 165 130 200 12 3.5 115 95 140 M8 3 178 185 137 226 335
100L 160 140 63 28 60 8 24 100 12 215 180 250 15 4 130 110 160 M8 3.5 206 206 150 250 376
112M 190 140 70 28 60 8 24 112 12 215 180 250 15 4 130 110 160 M8 3.5 222 228 170 285 400
132S 216 140 89 38 80 10 33 132 12 265 230 300 15 4 165 130 200 M10 4 257 267 190 325 460
132M 216 178 89 38 80 10 33 132 12 265 230 300 15 4 165 130 200 M10 4 257 267 190 325 500
160M 254 210 108 42 110 12 37 160 15 300 250 350 15 5 215 180 250 M12 4 320 330 255 420 615
160L 254 254 108 42 110 12 37 160 15 300 250 350 15 5 215 180 250 M12 4 320 330 255 420 675
180M 279 241 121 48 110 14 42.5 180 15 300 250 350 19 5 265 230 300 M15 4 355 380 280 455 700
180L 279 279 121 48 110 14 42.5 180 15 300 250 350 19 5 265 230 300 M15 4 355 380 280 455 740

YE3, YE4 Series:
 

Frame size lnstallation Dimensions B3 (mm ) lnstallation Dimensions B5 (mm ) lnstallation Dimension B14 (mm ) Mounting Dimensions  (mm )
A B C D E F G H K M N P S T M N P S T AB AC AD HD L
56 90 71 36 9 20 3 7.2 56 5.8 100 80 120 7 3 65 50 80 M5 2.5 110 120 100 155 195
63 100 80 40 11 23 4 8.5 63 7 115 95 140 10 3 75 60 90 M5 2.5 125 130 100 165 215
71 112 90 45 14 30 5 11 71 7 130 110 160 10 3.5 85 70 105 M6 2.5 140 150 110 185 246
80 125 100 50 19 40 6 15.5 80 10 165 130 200 12 3.5 100 80 120 M6 3 160 170 145 215 305
90S 140 100 56 24 50 8 20 90 10 165 130 200 12 3.5 115 95 140 M8 3 178 185 165 226 360
90L 140 125 56 24 50 8 20 90 10 165 130 200 12 3.5 115 95 140 M8 3 178 185 165 226 385
100L 160 140 63 28 60 8 24 100 12 215 180 250 15 4 130 110 160 M8 3.5 270 206 175 250 445
112M 190 140 70 28 60 8 24 112 12 215 180 250 15 4 130 110 160 M8 3.5 270 228 190 285 455
132S 216 140 89 38 80 10 33 132 12 265 230 300 15 4 165 130 200 M10 4 270 267 220 325 475
132M 216 178 89 38 80 10 33 132 12 265 230 300 15 4 165 130 200 M10 4 270 267 220 325 570
160M 254 210 108 42 110 12 37 160 15 300 250 350 15 5 215 180 250 M12 4 320 330 260 420 655
160L 254 254 108 42 110 12 37 160 15 300 250 350 15 5 215 180 250 M12 4 320 330 260 420 685
180M 279 241 121 48 110 14 42.5 180 15 300 250 350 19 5 265 230 300 M15 4 360 380 305 455 705
180L 279 279 121 48 110 14 42.5 180 15 300 250 350 19 5 265 230 300 M15 4 360 380 305 455 745

YEJ B3 Series H63-180:
 

Frame size Installation Dimensions (mm)
A B C D E F G H K AB AC HD L
63 100 80 40 Φ11 23 4 12.5 63 Φ7 135 120×120 167 255
71 112 90 45 Φ14 30 5 16 71 Φ7 137 130×130 178 305
80M 125 100 50 Φ19 40 6 21.5 80 Φ10 155 145×145 190 340
90S 140 100 56 Φ24 50 8 27 90 Φ10 175 160×160 205 400
90L 140 125 56 Φ24 50 8 27 90 Φ10 175 160×160 205 400
100L 160 140 63 Φ28 60 8 31 100 Φ12 200 185×185 240 440
112M 190 140 70 Φ28 60 8 31 112 Φ12 230 200×200 270 480
132S 216 140 89 Φ38 80 10 41 132 Φ12 270 245×245 315 567
132M 216 178 89 Φ38 80 10 41 132 Φ12 270 245×245 315 567
160M 254 210 108 Φ42 110 12 45 160 Φ14.5 320 335×335 450 780
160L 254 254 108 Φ42 110 12 45 160 Φ14.5 320 335×335 450 780
180M 279 241 121 Φ48 110 14 51.5 180 Φ14.5 355 370×370 500 880
180L 279 279 121 Φ48 110 14 51.5 180 Φ14.5 355 370×370 500 880

YEJ B5 Series H63-180:
 

Frame size Installation Dimensions (mm)
D E F G M N P S T AC HD L
63 Φ11 23 4 12.5 115 95 140 10 3 120×120 104 255
71 Φ14 30 5 16 130 110 160 10 3 130×130 107 305
80M Φ19 40 6 21.5 165 130 200 12 3.5 145×145 115 340
90S Φ24 50 8 27 165 130 200 12 3.5 160×160 122 400
90L Φ24 50 8 27 165 130 200 12 3.5 160×160 122 400
100L Φ28 60 8 31 215 180 250 14.5 4 185×185 137 440
112M Φ28 60 8 31 215 180 250 14.5 4 200×200 155 480
132S Φ38 80 10 41 265 230 300 14.5 4 245×245 180 567
132M Φ38 80 10 41 265 230 300 14.5 4 245×245 180 567
160M Φ42 110 12 45 300 250 350 18.5 5 320×320 290 780
160L Φ42 110 12 45 300 250 350 18.5 5 320×320 290 780
180M Φ48 110 14 51.5 300 250 350 18.5 5 360×360 340 880
180L Φ48 110 14 51.5 300 250 350 18.5 5 360×360 340 880

YEJ B14 Series H63-112:
 

Frame size  Installation Dimensions (mm)
D E F G M N P S T AC HD L
63 Φ11 23 4 12.5 75 60 90 M5 2.5 120×120 104 255
71 Φ14 30 5 16 85 70 105 M6 2.5 130×130 107 305
80 Φ19 40 6 21.5 100 80 110 M6 3 145×145 115 340
90S Φ24 50 8 27 115 95 120 M8 3 160×160 122 400
90L Φ24 50 8 27 115 95 120 M8 3 160×160 122 400
100L Φ28 60 8 31 130 110 155 M8 3.5 185×185 137 440
112M Φ28 60 8 31 130 110 160 M8 3.5 200×200 155 480

YVP B3 Series H63-180:

Frame size Installation Dimensions (mm)
A B C D E F G H K AB AC HD L
63 100 80 40 Φ11 23 4 12.5 63 7 135 120×120 167 260
71 112 90 45 Φ14 30 5 16 71 7 137 130×130 178 295
80 125 100 50 Φ19 40 6 21.5 80 10 155 145×145 190 340
90S 140 100 56 Φ24 50 8 27 90 10 175 160×160 205 390
90L 140 125 56 Φ24 50 8 27 90 10 175 160×160 205 400
100L 160 140 63 Φ28 60 8 31 100 12 200 185×185 240 430
112M 190 140 70 Φ28 60 8 31 112 12 230 200×200 270 460
132S 216 140 89 Φ38 80 10 41 132 12 270 245×245 315 525
132M 216 178 89 Φ38 80 10 41 132 12 270 245×245 315 525
160M 254 210 108 Φ42 110 12 45 160 14.5 320 335×335 450 850
160L 254 254 108 Φ42 110 12 45 160 14.5 320 335×335 450 870
180M 279 241 121 Φ48 110 14 51.5 180 14.5 355 370×370 500 880
180L 279 279 121 Φ48 110 14 51.5 180 14.5 355 370×370 500 980

YVP B5 Series H63-180:
 

C Installation Dimensions (mm)
D E F G M N P S T AC HD L
63 Φ11 23 4 12.5 115 95 140 10 3 120×120 104 260
71 Φ14 30 5 16 130 110 160 10 3.5 130×130 107 295
80M Φ19 40 6 21.5 165 130 200 12 3.5 145×145 115 340
90S Φ24 50 8 27 165 130 200 12 3.5 160×160 122 390
90L Φ24 50 8 27 165 130 200 12 3.5 160×160 122 400
100L Φ28 60 8 31 215 180 250 14.5 4 185×185 137 430
112M Φ28 60 8 31 215 180 250 14.5 4 200×200 155 460
132S Φ38 80 10 41 265 230 300 14.5 4 245×245 180 525
132M Φ38 80 10 41 265 230 300 14.5 4 245×245 180 252
160M Φ42 110 12 45 300 250 350 18.5 5 335×335 290 850
160L Φ42 110 12 45 300 250 350 18.5 5 335×335 290 870
180M Φ48 110 14 51.5 300 250 350 18.5 5 370×370 340 880
180L Φ48 110 14 51.5 300 250 350 18.4 5 370×370 340 980

YVP B14 Series H63-112:
 

Frame size Installation Dimensions (mm)
D E F G M N P S T AC HD L
63 Φ11 23 4 12.5 75 60 90 M5 2.5 120×120 104 260
71 Φ14 30 5 16 85 70 105 M6 2.5 130×130 107 295
80 Φ19 40 6 21.5 100 80 110 M6 3 145×145 115 340
90S Φ24 50 8 27 115 95 120 M8 3 160×160 122 390
90L Φ24 50 8 27 115 95 120 M8 3 160×160 122 400
100L Φ28 60 8 31 130 110 155 M8 3.5 185×185 137 430
112M Φ28 60 8 31 130 110 160 M8 3.5 200×200 155 460

 

Product Parameters

YS/MS Series:

TYPE RATED OUTPUT RATED
SPEED
EFFICIENCY POWER
FOCTOR
RATED
CURRENT
RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TOROUE LOCKED ROTOR TORQUE
RATED TORQUE RATED TORQUE RATED CURRENT
  KW HP rpm η%(IE2) cosφ A Nm Ts/Tn Tmax/Tn IS/In
YS-5612 0.09  1/8 2680 62.0 0.68 0.32 0.307 2.3 2.3 6.0
YS-5622 0.12  1/6 2660 67.0 0.71 0.38 0.410 2.3 2.3 6.0
YS-6312 0.18  1/4 2710 69.0 0.75 0.53 0.614 2.3 2.3 6.0
YS-6322 0.25  1/3 2730 72.0 0.78 0.68 0.853 2.3 2.3 6.0
YS-7112 0.37  1/2 2760 73.5 0.80 0.96 1.260 2.3 2.3 6.0
YS-7122 0.55  3/4 2770 75.5 0.82 1.35 1.880 2.3 2.3 6.0
YS-8012 0.75 1.0 2770 76.5 0.85 1.75 2.560 2.2 2.3 6.0
YS-8571 1.10 1.5 2800 77.0 0.85 2.55 3.750 2.2 2.3 7.0
YS-90S-2 1.50 2.0 2840 78.5 0.85 3.42 5.040 2.2 2.3 7.0
YS-90L-2 2.20 3.0 2840 81.0 0.86 4.80 7.400 2.2 2.3 7.0
YS-100L-2 3.00 4.0 2890 84.6 0.87 6.17 9.910 2.2 2.3 7.8
YS-5614 0.06 1/12 1320 56.0 0.58 0.28 0.410 2.4 2.4 6.0
YS-5624 0.09  1/8 1320 58.0 0.61 0.39 0.614 2.4 2.4 6.0
YS-6314 0.12  1/6 1350 60.0 0.63 0.48 0.819 2.4 2.4 6.0
YS-6324 0.18  1/4 1350 64.0 0.66 0.65 1.230 2.4 2.4 6.0
YS-7114 0.25  1/3 1350 67.0 0.68 0.83 1.710 2.4 2.4 6.0
YS-7124 0.37  1/2 1350 69.5 0.72 1.12 2.520 2.4 2.4 6.0
YS-8014 0.55  3/4 1380 73.5 0.73 1.56 3.750 2.4 2.4 6.0
YS-8571 0.75 1.0 1390 75.5 0.75 2.01 5.120 2.3 2.4 6.5
YS-90S-4 1.10 1.5 1400 78.0 0.78 2.75 7.400 2.3 2.4 6.5
YS-90L-4 1.50 2.0 1400 79.0 0.79 3.65 10.100 2.3 2.4 6.5
YS-100L1-4 2.20 3.0 1440 84.3 0.81 4.90 14.600 2.3 2.3 7.6
YS-100L2-4 3.00 4.0 1440 85.5 0.82 6.50 19.900 2.3 2.3 7.6
YS-7116 0.18 1/4 910 59.0 0.61 0.76 1.890 2.0 2.0 5.5
YS-7126 0.25 1/3 910 63.0 0.62 0.97 2.260 2.0 2.0 5.5
YS-8016 0.37 1/2 910 68.0 0.62 1.33 3.880 2.0 2.0 5.5
YS-8026 0.55 3/4 910 71.0 0.64 1.84 5.770 2.0 2.0 5.5
YS-90S-6 0.75 1.0 920 73.0 0.68 2.30 7.790 2.0 2.1 5.5
YS-90L-6 1.10 1.5 920 74.0 0.70 3.23 11.400 2.0 2.1 6.0
YS-100L-6 1.50 2.0 940 79.0 0.75 3.38 15.200 2.0 2.1 6.5
YS-711-8 0.09 0.12 600 40.0 0.57 0.60 1.950 1.8 1.9 2.8
YS-712-8 0.12 0.18 600 45.0 0.57 0.71 2.160 1.8 1.9 2.8
YS-801-8 0.18 0.25 645 51.0 0.61 0.88 2.490 1.8 2.0 3.3
YS-802-8 0.25 0.37 645 54.0 0.61 1.15 3.640 1.8 2.0 3.3
YS-90S-8 0.37 0.50 670 62.0 0.61 1.49 5.120 1.8 2.0 4.0
YS-90L-8 0.55 0.75 670 63.0 0.61 2.17 7.610 1.8 2.1 4.0

YE3 Series:

TYPE RATED OUTPUT RATED
SPEED
EFFICIENCY POWER
FOCTOR
RATED
CURRENT
RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TOROUE LOCKED ROTOR TORQUE
RATED TORQUE RATED TORQUE RATED CURRENT
  KW HP rpm η%(IE3) cosφ A Nm Ts/Tn Tmax/Tn IS/In
YE3-801-2 0.75 1.0 2880 80.7 0.82 1.72 2.49 2.3 2.3 7.0
YE3-802-2 1.10 1.5 2880 82.7 0.83 2.43 3.65 2.2 2.3 7.3
YE3-90S-2 1.50 2.0 2895 84.2 0.84 3.22 4.95 2.2 2.3 7.6
YE3-90L-2 2.20 3.0 2895 85.9 0.85 4.58 7.26 2.2 2.3 7.6
YE3-100L-2 3.00 4.0 2895 87.1 0.87 6.02 9.90 2.2 2.3 7.8
YE3-160L-2 18.50 25.0 2940 92.4 0.89 34.20 60.10 2.0 2.3 8.2
YE3-802-4 0.75 1.0 1420 82.5 0.75 1.84 5.04 2.3 2.3 6.6
YE3-90s-4 1.10 1.5 1445 84.1 0.76 2.61 7.27 2.3 2.3 6.8
YE3-90L-4 1.50 2.0 1445 85.3 0.77 3.47 9.91 2.3 2.3 7.0
YE3-100L1-4 2.20 3.0 1435 86.7 0.81 4.76 14.60 2.3 2.3 7.6
YE3-100L2-4 3.00 4.0 1435 87.7 0.82 6.34 20.00 2.3 2.3 7.6
YE3-112M-4 4.00 5.5 1440 88.6 0.82 8.37 26.50 2.2 2.3 7.8
YE3-132S-4 5.50 7.5 1460 89.6 0.83 11.20 36.00 2.0 2.3 7.9
YE3-132M-4 7.50 10.0 1460 90.4 0.84 15.00 49.10 2.0 2.3 7.5
YE3-160M-4 11.00 15.0 1465 91.4 0.85 21.50 71.70 2.2 2.3 7.7
YE3-160L-4 15.00 20.0 1465 92.1 0.86 28.80 97.80 2.2 2.3 7.8
YE3-180M-4 18.50 25.0 1470 92.6 0.86 35.30 120.20 2.0 2.3 7.8
YE3-180L-4 22.00 30.0 1470 93 0.86 41.80 142.90 2.0 2.3 7.8
YE3-90S-6 0.75 1.0 935 78.9 0.71 2.03 7.66 2.0 2.1 6.0
YE3-90L-6 1.10 1.5 945 81 0.73 2.83 11.10 2.0 2.1 6.0
YE3-100L-6 1.50 2.0 949 82.5 0.73 3.78 15.10 2.0 2.1 6.5
YE3-112M-6 2.20 3.0 955 84.3 0.74 5.36 22.00 2.0 2.1 6.6
YE3-132S-6 3.00 4.0 968 85.6 0.74 7.20 29.60 2.0 2.1 6.8
YE3-132M1-6 4.00 5.5 968 86.8 0.74 9.46 39.50 2.0 2.1 6.8
YE3-132M2-6 5.50 7.5 968 88 0.75 12.70 54.30 2.0 2.1 7.0
YE3-160M-6 7.50 10.0 970 89.1 0.79 16.20 73.80 2.0 2.1 7.0
YE3-160L-6 11.00 15.0 970 90.3 0.8 23.10 108.30 2.0 2.1 6.2
YE3-180L-6 18.50 20.0 975 91.2 0.81 30.90 146.90 2.0 2.1 7.3

YE4 Series:

  OUTPUT RATED CURRENT ROTATE SPEED EFFICIENCY POWER FOCTOR RATED TORQUE LOCKED ROTOR TORQUE LOCKED ROTOR CURRENT MAXIMUM TORQUE NOISE
TYPE RATED TORQUE RATED CURRENT RATED TORQUE
  kW A r/min Eff.%(IE4) P.F N.m Tst Ist Tmax dB(A)
  TN IN TN
SYNCHRO-SPEED 3000r/min
YE4-80M1-2 0.75 1.6 2895 83.5 0.83 2.47 2.2 8.5 2.3 62
YE4-80M2-2 1.1 2.4 2895 85.2 0.83 3.63 2.2 8.5 2.3 62
YE4-90S-2 1.5 3.1 2880 86.5 0.85 4.97 2.2 9.0 2.3 67
YE4-90L-2 2.2 4.4 2880 88.0 0.86 7.30 2.2 9.0 2.3 67
YE4-100L-2 3 5.9 2905 89.1 0.87 9.86 2.2 9.5 2.3 74
YE4-112M-2 4 7.7 2920 90.0 0.88 13.10 2.2 9.5 2.3 77
YE4-132S1-2 5.5 10.4 2945 90.0 0.88 17.80 2.0 9.5 2.3 79
YE4-132S2-2 7.5 14 2940 91.7 0.89 24.40 2.0 9.5 2.3 79
YE4-160M1-2 11 20.3 2965 92.6 0.89 35.40 2.0 9.5 2.3 81
YE4-160M2-2 15 27.5 2965 93.3 0.89 48.30 2.0 9.5 2.3 81
YE4-160L-2 18.5 33.7 2965 93.7 0.89 59.60 2.0 9.5 2.3 81
SYNCHRO-SPEED1500r/min
YE4-80M1-4 0.55 1.4 1440 83.9 0.74 3.65 2.4 6.6 2.3 56
YE4-80M2-4 0.75 1.8 1440 85.7 0.74 4.97 2.3 8.5 2.3 56
YE4-90S-4 1.1 2.6 1445 87.2 0.75 7.27 2.3 8.5 2.3 59
YE4-90L-4 1.5 3.4 1445 88.2 0.76 9.91 2.3 9.0 2.3 59
YE4-100L1-4 2.2 4.7 1450 89.5 0.79 14.50 2.3 9.0 2.3 64
YE4-100L2-4 3 6.3 1450 90.4 0.8 19.80 2.3 9.5 2.3 64
YE4-112M-4 4 8.3 1460 91.1 0.8 26.20 2.3 9.5 2.3 65
YE4-132S-4 5.5 11.4 1475 91.1 0.8 35.60 2.0 9.5 2.3 71
YE4-132M-4 7.5 15.2 1470 92.6 0.81 48.70 2.0 9.5 2.3 71
YE4-160M-4 11 21.6 1470 93.3 0.83 71.50 2.0 9.5 2.3 73
YE4-160L-4 15 28.9 1470 93.9 0.84 97.40 2.0 9.5 2.3 73
SYNCHRO-SPEED1000r/min
YE4-80M1-6 0.37 1.1 940 78.0 0.68 3.76 1.9 6.0 2.1 54
YE4-80M2-6 0.55 1.5 940 80.9 0.68 5.59 1.9 6.0 2.1 54
YE4-90S-6 0.75 2 950 82.7 0.7 7.54 2.1 7.5 2.1 57
YE4-90L-6 1.1 2.8 950 84.5 0.7 11.10 2.1 7.5 2.1 57
YE4-100L-6 1.5 3.7 960 85.9 0.71 14.90 2.1 7.5 2.1 61
YE4-112M-6 2.2 5.4 975 87.4 0.71 21.50 2.1 7.5 2.1 65
YE4-132S-6 3 7.2 985 88.6 0.71 29.10 2.0 7.5 2.1 69
YE4-132M1-6 4 9.4 985 89.5 0.72 38.80 2.0 8.0 2.1 69
YE4-132M2-6 5.5 12.8 980 90.5 0.72 53.60 2.0 8.0 2.1 69
YE4-160M-6 7.5 16.4 980 91.3 0.76 73.10 2.0 8.0 2.1 73
YE4-160L-6 11 23.5 980 92.3 0.77 107.00 2.0 8.5 2.1 73

YEJ 3000r/min 380V 50Hz:

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE STATIC BRAKE TCRQUE BRAKE TIME
RATED TORQUE RATED TORQUE DC
  KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn NM  S
YEJ-631-2 0.18 2800 65.0 0.80 0.53 0.61 2.2 2.2 3.5 0.10
YEJ-632-2 0.25 2800 68.0 0.81 0.69 0.85 2.2 2.2 3.5 0.10
YEJ-711-2 0.37 2830 70.0 0.81 0.99 1.25 2.2 2.2 4.0 0.10
YEJ-712-2 0.55 2830 73.0 0.82 1.40 1.86 2.2 2.3 4.0 0.10
YEJ-801-2 0.75 2840 75.0 0.83 1.83 2.52 2.2 2.3 7.5 0.10
YEJ-802-2 1.10 2840 77.0 0.84 2.55 3.70 2.2 2.3 7.5 0.10
YEJ-90S-2 1.50 2840 79.0 0.84 3.39 5.04 2.2 2.3 15 0.15
YEJ-90L-2 2.20 2840 81.0 0.85 4.80 7.40 2.2 2.3 15 0.15
YEJ-100L1-2 3.00 2860 83.0 0.87 6.31 10.00 2.2 2.3 30 0.15
YEJ-100L2-2 4.00 2880 85.0 0.88 8.22 13.30 2.2 2.3 40 0.15
YEJ-112M-2 5.50 2910 86.0 0.88 11.2 18.00 2.2 2.3 80 0.15
YEJ-132S-2 7.00 2910 87.0 0.88 15.1 24.60 2.2 2.3 80 0.15
YEJ-132M-2 11.00 2930 88.0 0.89 21.3 35.90 2.2 2.3 150 0.30
YEJ-160M-2 15.00 2930 89.0 0.89 28.8 48.90 2.2 2.2 150 0.30
YEJ-160L-2 18.50 2935 90.0 0.90 34.7 60.20 2.2 2.2 150 0.30
YEJ-180M-2 22.00 2935 90.0 0.90 41.3 71.60 2.2 2.2 200 0.30

YEJ 1500r/min 380V 50Hz:

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE STATIC BRAKE TCRQUE BRAKE TIME
RATED TORQUE RATED TORQUE DC
  KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn NM  S
YEJ-631-4 0.12 1360 57.0 0.72 0.44 0.84 2.2 2.0 3.5 0.10
YEJ-632-4 0.18 1360 60.0 0.73 0.62 1.26 2.2 2.0 3.5 0.10
YEJ-711-4 0.25 1375 65.0 0.74 0.79 1.74 2.2 2.0 4.0 0.10
YEJ-712-4 0.37 1375 67.0 0.75 1.12 2.57 2.2 2.0 4.0 0.10
YEJ-801-4 0.55 1405 71.0 0.75 1.57 3.74 2.2 2.4 7.5 0.10
YEJ-802-4 0.75 1405 73.0 0.76 2.02 5.10 2.2 2.4 7.5 0.10
YEJ-90S-4 1.10 1445 75.0 0.77 2.82 7.27 2.2 2.3 15 0.15
YEJ-90L-4 1.50 1445 78.0 0.79 3.7 9.91 2.2 2.3 15 0.15
YEJ-100L1-4 2.20 1440 80.0 0.81 5.16 14.60 2.2 2.3 30 0.15
YEJ-100L2-4 3.00 1440 82.0 0.82 6.78 19.90 2.2 2.3 30 0.15
YEJ-112M-4 4.00 1440 84.0 0.82 8.82 26.50 2.2 2.3 40 0.15
YEJ-132S-4 5.50 1440 85.0 0.83 11.7 36.50 2.2 2.3 80 0.15
YEJ-132M-4 7.50 1440 87.0 0.84 15.6 49.70 2.2 2.3 80 0.15
YEJ-160M-4 11.00 1450 88.0 0.85 21.3 72.40 2.2 2.2 150 0.30
YEJ-160L-4 15.00 1450 89.0 0.85 30.1 98.80 2.2 2.2 150 0.30
YEJ-180M-4 18.50 1455 90.5 0.86 36.5 121.40 2.2 2.2 150 0.30
YEJ-180L-4 22.00 1455 91.0 0.86 43.1 144.40 2.0 2.2 200 0.30

YEJ 1000r/min 380V 50Hz: 

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE STATIC BRAKE TCRQUE BRAKE TIME
RATED TORQUE RATED TORQUE DC
  KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn NM  S
YEJ-711-6 0.18 900 56.0 0.66 0.71 19.10 1.9 2.0 4.0 0.10
YEJ-712-6 0.25 900 59.0 0.68 0.95 2.65 1.9 2.0 4.0 0.10
YEJ-801-6 0.37 910 62.0 0.70 1.30 3.88 1.9 2.0 7.5 0.10
YEJ-802-6 0.55 910 65.0 0.72 1.79 5.77 1.9 2.1 7.5 0.10
YEJ-90S-6 0.75 930 69.0 0.72 2.26 7.70 2.1 2.1 15 0.15
YEJ-90L-6 1.10 940 72.0 0.73 3.14 11.20 2.1 2.1 15 0.15
YEJ-100L-6 1.50 940 76.0 0.76 3.95 15.20 2.2 2.1 30 0.15
YEJ-112M-6 2.20 96o 79.0 0.76 5.57 21.90 2.2 2.1 40 0.15
YEJ-132S-6 3.00 960 81.0 0.76 7.40 29.80 2.2 2.1 80 0.15
YEJ-132M1-6 4.00 960 82.0 0.76 9.63 39.80 2.2 2.1 80 0.15
YEJ-132M2-6 5.50 960 84.0 0.77 12.90 54.70 2.2 2.1 150 0.30
YEJ-160M-6 7.50 970 86.0 0.77 17.00 73.80 1.8 2.1 150 0.30
YEJ-160L-6 11.00 970 87.5 0.78 24.30 108.30 1.9 2.1 150 0.30
YEJ-180L-6 15.00 970 89.0 0.81 31.60 147.70 2.1 2.1 200 0.30

YVP 3000r/min 380V 50Hz:

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE FREOUENCY CONVERSION BLOWER
RATED TORQUE RATED TORQUE VOLTAGEV SPEED
KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn THREE PHASE SINGLE PHASE RPM
YVP-631-2 0.18 2800 65.0 0.80 0.53 0.61 2.2 2.2 380 220 2800
YVP-632-2 0.25 2800 68.0 0.81 0.69 0.85 2.2 2.2 380 220 2800
YVP-711-2 0.37 2830 70.0 0.81 0.99 1.25 2.2 2.2 380 220 2800
YVP-712-2 0.55 2830 73.0 0.82 1.40 1.86 2.2 2.3 380 220 2800
YVP-801-2 0.75 2840 75.0 0.83 1.83 2.52 2.2 2.3 380 220 2800
YVP-802-2 1.10 2840 77.0 0.85 2.55 3.70 2.2 2.3 380 220 2800
YVP-90S-2 1.50 2840 79.0 0.85 3.39 5.04 2.2 2.3 380 220 2800
YVP-90L-2 2.20 2840 81.0 0.86 4.80 7.40 2.2 2.3 380 220 2800
YVP-100L-2 3.00 2860 83.0 0.87 6.31 10.0 2.2 2.3 380 220 2800
YVP-112M-2 4.00 2880 84.0 0.88 8.22 13.3 2.2 2.3 380 220 2800
YVP-132S1-2 5.50 2910 85.0 0.88 11.2 18.0 2.2 2.3 380 220 2800
YVP-132S2-2 7.50 2910 86.0 0.88 15.1 24.6 2.2 2.3 380 220 2800
YVP-160M1-2 11.0 2930 88.0 0.89 21.3 35.9 2.2 2.3 380 220 2800
YVP-160M2-2 15.0 2930 89.0 0.89 28.8 48.9 2.2 2.3 380 220 2800
YVP-160L-2 18.5 2935 90.0 0.90 34.7 60.2 2.2 2.3 380 220 2800
YVP-180M-2 22.0 2935 90.0 0.90 41.3 71.6 2.0 2.3 380 220 2800

YVP 1500r/min 380V 50Hz:

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE FREOUENCY CONVERSION BLOWER
RATED TORQUE RATED TORQUE VOLTAGEV SPEED
KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn THREE PHASE SINGLE PHASE RPM
YVP-631-4 0.12 1360 57.0 0.72 0.44 0.84 2.2 2.0 380 220 2800
YVP-632-4 0.18 1360 60.0 0.73 0.62 1.26 2.2 2.0 380 220 2800
YVP-711-4 0.25 1375 65.0 0.74 0.79 1.74 2.2 2.0 380 220 2800
YVP-712-4 0.37 1375 67.0 0.75 1.12 2.57 2.2 2.0 380 220 2800
YVP-801-4 0.55 1405 71.0 0.75 1.57 3.74 2.2 2.4 380 220 2800
YVP-802-4 0.75 1405 73.0 0.77 2.02 5.10 2.2 2.4 380 220 2800
YVP-90S-4 1.10 1445 75.0 0.79 2.82 7.27 2.2 2.3 380 220 2800
YVP-90L-4 1.50 1445 78.0 0.79 3.70 9.91 2.2 2.3 380 220 2800
YVP-100L1-4 2.20 1440 80.0 0.81 5.16 14.60 2.2 2.3 380 220 2800
YVP-100L2-4 3.00 1440 82.0 0.82 6.78 19.90 2.2 2.3 380 220 2800
YVP-112M-4 4.00 1440 84.0 0.82 8.82 26.50 2.2 2.3 380 220 2800
YVP-132S-4 5.50 1440 85.0 0.84 11.70 36.50 2.2 2.3 380 220 2800
YVP-132M-4 7.50 1440 87.0 0.84 15.60 49.70 2.2 2.3 380 220 2800
YVP-160M-4 11.0 1450 88.0 0.85 21.30 72.40 2.2 2.2 380 220 2800
YVP-160L-4 15.0 1450 89.0 0.85 30.10 98.80 2.2 2.2 380 220 2800
YVP-180M-4 18.5 1455 90.5 0.86 36.50 121.40 2.2 2.2 380 220 2800
YVP-180L-4 22.0 1455 91.0 0.86 43.10 144.40 2.0 2.2 380 220 2800

YVP 1000r/min 380V 50Hz: 

TYPE RATED OUTPUT RATED SPEED EFFICENCY POWER FOCTOR RATED CURRENT RATED TORQUE LOCKED ROTOR TORQUE MAXIMUM TORQUE FREOUENCY CONVERSION BLOWER
RATED TORQUE RATED TORQUE VOLTAGEV SPEED
KW rpm η% COSφ A Nm Ts/Tn Tmax/Tn THREE PHASE SINGLE PHASE RPM
YVP-711-6 0.18 900 58.0 0.66 0.71 1.91 1.9 2.0 380 220 2800
YVP-712-6 0.25 900 59.0 0.68 0.95 2.65 1.9 2.0 380 220 2800
YVP-801-6 0.37 910 62.0 0.70 1.30 3.88 1.9 2.0 380 220 2800
YVP-802-6 0.55 910 65.0 0.72 1.79 5.77 1.9 2.1 380 220 2800
YVP-90S-6 0.75 930 70.0 0.72 2.26 7.70 2.1 2.1 380 220 2800
YVP-90L-6 1.10 940 73.0 0.73 3.14 11.2 2.1 2.1 380 220 2800
YVP-100L-6 1.50 940 76.0 0.76 3.95 15.2 2.2 2.1 380 220 2800
YVP-112M-6 2.20 960 79.0 0.76 5.57 21.9 2.2 2.1 380 220 2800
YVP-132S-6 3.00 960 81.0 0.76 7.40 29.8 2.2 2.1 380 220 2800
YVP-132M1-6 4.00 960 83.0 0.76 9.63 39.8 2.2 2.1 380 220 2800
YVP-132M2-6 5.50 960 84.0 0.77 12.9 54.7 2.2 2.1 380 220 2800
YVP-160M-6 7.50 970 86.0 0.78 17.0 73.8 1.8 2.1 380 220 2800
YVP-160L-6 11.0 970 87.0 0.79 24.3 108.3 1.9 2.1 380 220 2800
YVP-180L-6 15.0 970 89.0 0.81 31.6 147.7 2.1 2.1 380 220 2800

 

 

Company Profile

 

TLWERK, established by the R&D, production and sales team with more than 10 years of technical experience, is a professional trade company.

We focus on the R&D, technology and sales services of induction motors and motor power source systems, especially for the customized development of products according to the specific application requirements of customers.

The products are produced and tested by our professional motor manufacturers and related motor system manufacturers in the partnership.

The developed three-phase asynchronous motor series are: YS/MS, YL/ML, YE3, YE4, YEJ, YVP and permanent magnet motors.

Our products have got a good domestic market and a good fame in more than 30 provinces and cities in China, and now gradually expand the international market.

We have our own experienced R&D team, modern production lines and high-precision testing equipment. The manufacturer strictly implements the ISO9001-2015 quality management system, and all products have been inspected, and have obtained national CCC certification and international CE certification, as well as other relevant international certifications. Our motor products are widely used in different fields such as reducers, hydraulic equipment, lifting equipment, fans, wind power, home appliances, food, clothing, papermaking, packaging, ceramics, printing, chemical industry, animal husbandry machinery, woodworking machinery, agriculture and water conservancy.

Production & Workshop

We adhere to the business philosophy of “Life, based on quality; Trust, based on honesty; Win-win cooperation”, and insists on giving back to all customers with high-quality products and comprehensive services!

Certifications

Packaging & Shipping

FAQ

1.How about your MOQ and lead time?
Both MOQ and lead time depends on specific products. Generally speaking, it cost 10-30 days.

2.Can I get sample?
Yes. We offer sample motor.

3.Is customized service available?
OEM & ODM both are available. Please inform us with output power, speed rpm, output torque, using voltage and application range.

4. What is your payment term?
30% T/T in advance, 70% balance before shipment
30% T/T in advance, 70% balance 30 days after BL date by ocean, 15 days after AWB date by air, after a long-term stable cooperation.

5. What about warranty?
One year, during the guarantee period, we will supply freely of the easy damaged parts for the possible problems except for the incorrect operation. After expiration, we supply cost spare parts for alternator maintenance.

6.Why us?
* Professional factory for Electric Motor in China
*Safety / Energy Consumption / Superior Life
* Full of export experiences.
* 100% tested before delivery
* A complete set of motor solutions can be provided.
* Perfect performance, low noise, slight vibration, reliable running, good appearance, small volume, light weight and easy maintenance.
* CE/ISO Approved
 

Before Sale After Sale
1 Sample Confirmation 1 Comprehensive service with separate after-sale team
Providing information consulting and technical guidance. 2 Satisfied solution while any problem identified.
3 Packaging can be customized. 3 Exclusive and unique solution provided by professional engineers.
4 Reply to your enquiry in 24 working hours. 4 New craft, new technology and other related advisory services.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal
Speed: Constant Speed
Number of Stator: Single-Phase and Three-Phase
Function: Driving, Control, Driving, Control
Casing Protection: Customized
Number of Poles: 2-12
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

What are the safety considerations when working with or around AC motors?

Working with or around AC motors requires careful attention to safety to prevent accidents, injuries, and electrical hazards. Here are some important safety considerations to keep in mind:

  • Electrical Hazards: AC motors operate on high voltage electrical systems, which pose a significant electrical hazard. It is essential to follow proper lockout/tagout procedures when working on motors to ensure that they are de-energized and cannot accidentally start up. Only qualified personnel should perform electrical work on motors, and they should use appropriate personal protective equipment (PPE), such as insulated gloves, safety glasses, and arc flash protection, to protect themselves from electrical shocks and arc flash incidents.
  • Mechanical Hazards: AC motors often drive mechanical equipment, such as pumps, fans, or conveyors, which can present mechanical hazards. When working on or near motors, it is crucial to be aware of rotating parts, belts, pulleys, or couplings that can cause entanglement or crushing injuries. Guards and safety barriers should be in place to prevent accidental contact with moving parts, and proper machine guarding principles should be followed. Lockout/tagout procedures should also be applied to the associated mechanical equipment to ensure it is safely de-energized during maintenance or repair.
  • Fire and Thermal Hazards: AC motors can generate heat during operation, and in some cases, excessive heat can pose a fire hazard. It is important to ensure that motors are adequately ventilated to dissipate heat and prevent overheating. Motor enclosures and cooling systems should be inspected regularly to ensure proper functioning. Additionally, combustible materials should be kept away from motors to reduce the risk of fire. If a motor shows signs of overheating or emits a burning smell, it should be immediately shut down and inspected by a qualified professional.
  • Proper Installation and Grounding: AC motors should be installed and grounded correctly to ensure electrical safety. Motors should be installed according to manufacturer guidelines, including proper alignment, mounting, and connection of electrical cables. Adequate grounding is essential to prevent electrical shocks and ensure the safe dissipation of fault currents. Grounding conductors, such as grounding rods or grounding straps, should be properly installed and regularly inspected to maintain their integrity.
  • Safe Handling and Lifting: AC motors can be heavy and require proper handling and lifting techniques to prevent musculoskeletal injuries. When moving or lifting motors, equipment such as cranes, hoists, or forklifts should be used, and personnel should be trained in safe lifting practices. It is important to avoid overexertion and use proper lifting tools, such as slings or lifting straps, to distribute the weight evenly and prevent strain or injury.
  • Training and Awareness: Proper training and awareness are critical for working safely with or around AC motors. Workers should receive training on electrical safety, lockout/tagout procedures, personal protective equipment usage, and safe work practices. They should be familiar with the specific hazards associated with AC motors and understand the appropriate safety precautions to take. Regular safety meetings and reminders can help reinforce safe practices and keep safety at the forefront of everyone’s minds.

It is important to note that the safety considerations mentioned above are general guidelines. Specific safety requirements may vary depending on the motor size, voltage, and the specific workplace regulations and standards in place. It is crucial to consult relevant safety codes, regulations, and industry best practices to ensure compliance and maintain a safe working environment when working with or around AC motors.

induction motor

What are the key advantages of using AC motors in industrial applications?

AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:

  1. Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
  2. Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
  3. High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
  4. Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
  5. Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
  6. Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
  7. Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.

These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.

China factory 1/8 1/6 1/4 1/3 1/2 1 2 3 4 5 10 12 15 20 22 25 100 HP Industrial Asynchronous AC Motor Three Phase Brushless Servo Electric Motor for Motorcycle Vehicle   supplier China factory 1/8 1/6 1/4 1/3 1/2 1 2 3 4 5 10 12 15 20 22 25 100 HP Industrial Asynchronous AC Motor Three Phase Brushless Servo Electric Motor for Motorcycle Vehicle   supplier
editor by CX 2024-03-27

China high quality AC Servo Motor with Output 2.39nm vacuum pump and compressor

Product Description

Product Description

 

AC servo motor with output 2.39NM is a kind of control system, which can precisely control the position, speed and acceleration of the motor, so it has been widely used in many application fields. Its accuracy mainly comes from the following aspects: product-list-1.htm

Closed loop control system

 

The servo motor uses a closed-loop control system, which means that the feedback signal of the motor position is sent back to the controller, and the controller adjusts the motor according to the feedback signal to maintain the accuracy of the motor position. This feedback control system can quickly respond to external interference and load changes to maintain the stability and accuracy of the motor position.

High resolution encoder

 

Servomotors are usually equipped with high resolution encoders that convert the rotation position of the motor into a digital signal for processing by the controller. High resolution encoders are able to provide high accuracy, often to very small resolutions, such as a few angles or radians, thus guaranteeing the accuracy of the motor position.

 

Dynamic response capability

 

Servo motor has very fast dynamic response ability, can quickly respond to external interference and load changes. This is because servomotors typically employ high-performance electronics and controllers that can be quickly adjusted to maintain the stability and accuracy of the motor position.

Torque stability

 

The stable torque of the servo motor can provide accurate torque output, thus ensuring the accuracy of the motor position. This is because the servo motor uses high-performance electronics and controllers, which can quickly adjust the motor to maintain the stability and accuracy of the motor position.

 

Company Profile

Certifications

 

FAQ

Q: Speed reducer grease replacement time

A: When sealing appropriate amount of grease and running reducer, the standard replacement time is 20000 hours according to the aging condition of the grease. In addition, when the grease is stained or used in the surrounding temperature condition (above 40ºC), please check the aging and fouling of the grease, and specify the replacement time.

Q: Delivery time
A: Fubao has 2000+ production base, daily output of 1000+ units, standard models within 7 days of delivery.

Q: Reducer selection
A: Fubao provides professional product selection guidance, with higher product matching degree, higher cost performance and higher utilization rate.
 

Application: Machine Tool
Speed: High Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China high quality AC Servo Motor with Output 2.39nm   vacuum pump and compressor	China high quality AC Servo Motor with Output 2.39nm   vacuum pump and compressor
editor by CX 2023-12-15