China OEM GSK ZJY Industrial Motor Three Phase Compact Type Asynchronous AC Motor 380V 3.7kw vacuum pump oil

Product Description

Models Numbers

Product Description

GSK ZJY series spindle servo motor

Adopt the totally enclosed air cooling structure without the shell, good shape and compact structure.
Employ the optimized electromagnetic design with the characters of the low noise, smooth running and high efficiency. 
Introduce the imported bearing in high precision, and the rotor reaches the high precision with the dynamic balance process, which can ensure the motor running stable and reliable with small vibration and low noise in the maximum rotational speed range. 
Adopt the enameled wire of corona resistance, the motor can be driven reliably at the ambient temperature of -15″C~40″C and in the environment with the dust and oil mist.
Employ the encoder at high speed and in high precision, and it can be incorporated into the drive with high performance for controlling the speed and the position in high precision.
The overload capacity is strong and the motor is reliably running at Reliable operation at 150% of rated power for 30 minutes.
The speed regulation range is wide and the maximum speed can reach 12000r/min.
Impact resistance, long lifetime and high cost performance.
Protection level: IP54 (GB/T 4942.1-2006)
Insulation grade: Grade F (GB 755-2008)
Vibration grade: Grade B (GB 10068-2008)

Models Numbers

SR.NO Meaning 
(1) The spindle servo motor 
(2) Flange size ( 182, 208, 265, 320 ) 
(3) Design sequence number (None: Original A, B,C… : design sequence number) 
(4) Rated power (Unit:KW)
(5) Rated speed (V: 600 r/min, W: 750 r/min, A: 1000 r/min, B:1500 r/min, C: 2000 r/min, E: 3000 r/min )
(6) Max. speed (G: 15000 r/min,F: 12000 r/min, H:10000 r/min, M:7000 r/min, L:4500 r/min ) 
(7) D:Dual-Speed type 
(8) Structure installation type: (B5 flange installation, B3 footing installation, B35 flange & footing installation )
(9) Encoder type (None: Incremental 1571 p/r, A2: Incremental 5000 p/r, A5: Absolute 21 bit ) 
(10) Look the terminal box position in view from the shaft end (None: on the top, R: on the right, L: on the left).
(11) Shaft end (None: strainht shaft , Y1: with the standard key slot) 
(12) Customer special order numbers are bracketed in two capitals.
(13) Power supply voltage (none: three-phase 380~440V, L: three-phase 220V)

 

Product Parameters

 

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-1)

              Model ZJY182A-3.7BL ZJY182A-5.5BL ZJY182A-1.5BH ZJY182A-2.2BH ZJY182A-3.7BH ZJY182A-5.5BH ZJY182A-3.7EG ZJY182A-5.5EG ZJY182A-7.5EG
Item
Rated power(kW) 3.7 5.5 1.5 2.2 3.7 5.5 3.7 5.5 7.5
Adaptive driver  GS/GR3050 GS/GR3050 GS/GR3048 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3050 GS/GR3075 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 10.4 13.8 7.3 7.5 15.5 17.3 11.6 16.6 20.2
Rated 53.7 53.5 53.9 53.6 53.1 53.5 103.2 103.3 103.2
frequency(Hz)
Rated torque(N·m) 24 35 9.5 14 24 35 11.8 17.5 24
30min power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 5.5 7.5 11
30min current(A) 14.8 18 9.3 11 19.6 21.8 15.4 20.7 26.6
30min torque(N·m) 35 48 14 24 35 48 17.5 24 35
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 3000 3000 3000
Constant power range(r/min) 1500~4500 1500~4500 1500~8000 1500~8000 1500~8000 1500~8000 3000~12000 3000~12000 3000-12000
Max. speed(r/min) 4500 4500 10000 10000 10000 10000 15000 15000 15000
Moment of inertia(kg·m2) 0.0068 0.5712 0.004 0.0054 0.0083 0.5712 0.0054 0.0068 0.0083
Weight(kg) 37 52 27 32 43 52 32 37 43
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 37W 0.1A
 Overall dimension
 (refer to figures)
A 182 182 182 182 182 182 182 182 182
B 91 91 91 91 91 91 91 91 91
C 123 123 123 123 123 123 123 123 123
D 185 185 185 185 185 185 185 185 185
E 60 60 60 60 60 60 60 60 60
F 371 436 319 346 401 436 346 371 401
G 249 314 197 224 279 314 224 249 279
H 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7
I 12 12 12 12 12 12 12 12 12
J 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6
K 158 158 158 158 158 158 158 158 158
L 93 93 93 93 93 93 93 93 93
N 156 156 156 156 156 156 156 156 156
P 32 32 32 32 32 32 32 32 32
Q 184 249 132 159 214 249 159 184 214
S 60 60 60 60 60 60 60 60 60
T 4 4 4 4 4 4 4 4 4
Z 12 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-2)

     Model ZJY208A-3.7WL ZJY208A-2.2AM ZJY208A-3.7AM ZJY208A-5.5AM ZJY208A-5.5BL ZJY208A-7.5BL ZJY208A-9BL ZJY208A-3.7BM
Item
Rated power(kW) 3.7 2.2 3.7 5.5 5.5 7.5 9 3.7
Adaptive driver  GS/GR3050 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3050
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 11.3 6.7 10.2 16.3 12.9 17.9 21.6 8.6
Rated 27.3 35.7 35.7 35.7 53.3 52.9 52.6 52.9
frequency(Hz)
Rated torque(N·m) 47 21 35 53 35 48 57.3 24
30min power(kW) 5.5 3.7 5.5 7.5 7.5 11 12 5.5
30min current(A) 16 10.6 14.2 20.5 16.8 24 27.2 12.7
30min torque(N·m) 70 35 53 72 48 70 76.4 35
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500
Constant power range(r/min) 750~3500 1000~4000 1000~4000 1000~4000 1500~4500 1500~4500 1500~4500 1500-5000
Max. speed(r/min) 4500 7000 7000 7000 4500 4500 4500 7000
Moment of inertia(kg·m2) 0.571 0.0142 0.0196 0.571 0.0143 0.0196 0.5716 0.0142
Weight(kg) 77 51 66 77 51.5 66 77.5 51
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A
 Overall dimension 
(refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 80 80 80 80 80 80 80
F 524 414 469 524 414 469 524 414
G 395 285 340 395 285 340 395 285
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 28h6 38h6 38h6 38h6 38h6 48h6 28h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 320 210 265 320 210 265 320 210
S 80 60 80 80 80 80 110 60
T 5 5 5 5 5 5 5 5
  Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-3)

     Model ZJY208A-5.5BM ZJY208A-7.5BM ZJY208A-2.2BH ZJY208A-3.7BH ZJY208A-5.5BH ZJY208A-7.5BH ZJY208A-11CM ZJY208A-11CH
Item
Rated power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 11 11
Adaptive driver  GS/GR3050 GS/GR3075 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3100 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 13 17 8.9 12.6 18.4 22.4 28.3 28.3
Rated 52.4 52.7 52.6 52.5 52.4 52.6 69.1 69
frequency(Hz)
Rated torque(N·m) 35 48 14 24 35 48 52.6 52.5
30min power(kW) 7.5 11 3.7 5.5 7.5 11 15 15
30min current(A) 16.9 24.6 13.8 18 24 32.2 37 37
30min torque(N·m) 48 70 24 35 48 70 71.6 71.6
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 2000 2000
Constant power range(r/min) 1500~5000 1500~5000 1500~5000 1500~5000 1500~8000 1500~8000 2000~7000 2000-8000
Max. speed(r/min) 7000 7000 10000 10000 10000 10000 7000 10000
Moment of inertia(kg·m2) 0.0196 0.571 0.0093 0.0142 0.0196 0.571 0.5716 0.571
Weight(kg) 66 77 49 51 66 77 77.5 77
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 80 60 60 80 80 110 80
F 469 524 364 414 469 524 524 524
G 340 395 235 285 340 395 395 395
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 38h6 28h6 28h6 38h6 38h6 48h6 38h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 265 320 160 210 265 320 320 320
S 80 80 53 60 80 80 110 80
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-4)

     Model ZJY208A-5.5CF ZJY208A-7.5CF ZJY208A-11EH ZJY208A-5.5EF ZJY208A-7.5EF ZJY208A-11EF ZJY265A-5.5WL ZJY265A-7.5WL
Item
Rated power(kW) 5.5 7.5 11 5.5 7.5 11 5.5 7.5
Adaptive driver  GS/GR3075 GS/GR3100 GS/GR3100 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3075 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 19 25.8 25.2 12.8 17.7 25.2 16.3 21.4
Rated 69 69 102.2 102.9 102.2 102.2 26.6 26.7
frequency(Hz)
Rated torque(N·m) 26.3 35.8 35 17.5 24 35 70 95.5
30min power(kW) 7.5 11 15 7.5 11 15 7.5 11
30min current(A) 24 34.9 31.6 16 23.3 31.7 20.8 30.1
30min torque(N·m) 35.8 52.5 48 24 35 48 95.5 140
Rated speed(r/min) 2000 2000 3000 3000 3000 3000 750 750
Constant power range(r/min) 2000~10000 2000~10000 3000~9000 3000~10000 3000~10000 3000~10000 750~3500 750-3500
Max. speed(r/min) 12000 12000 10000 12000 12000 12000 4500 4500
Moment of inertia(kg·m2) 0.0142 0.0196 0.0196 0.0093 0.0142 0.0196 0.0606 0. 0571
Weight(kg) 51 66 66 49 51 66 107 125
Installation type IM B5 or B35  IM B5 or B3
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A Three-phase AC 380~440V 50/60Hz 70W 0.21A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 265 265
B 104 104 104 104 104 104 132 132
C 160 160 160 160 160 160 185 185
D 215 215 215 215 215 215 265 265
E 60 80 80 60 60 80 110 110
F 414 469 469 364 414 469 487 533
G 285 340 340 235 285 340 347 392
H 180h7 180h7 180h7 180h7 180h7 180h7 230h7 230h7
I 14 14 14 14 14 14 14 14
J 28h6 38h6 38h6 28h6 28h6 38h6 48h6 48h6
K 212 212 212 212 212 212 256 256
L 106 106 106 106 106 106 135 135
N 180 180 180 180 180 180 230 230
P 40 40 40 40 40 40 40 40
Q 210 265 265 160 210 265 270 315
S 60 80 80 60 60 80 110 110
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 15 15

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-5)

     Model ZJY265A-11WL ZJY265A-7.5AM ZJY265A-11AM ZJY265A-15AM ZJY265A-7.5BM ZJY265A-11BM ZJY265A-15BM ZJY265A-18.5BM ZJY265A-22BM
Item
Rated power(kW) 11 7.5 11 15 7.5 11 15 18.5 22
Adaptive driver  GS/GR3148 GS/GR3100 GS/GR3148 GS/GR3150 GS/GR3075 GS/GR3100 GS/GR3150 GS/GR3150 GS/GR3198
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 30 21.5 30.9 48.3 18 26 35 48.7 58
Rated 27.2 35.2 35.2 35.1 52.3 52.2 51.9 51.8 51.7
frequency(Hz)
Rated torque(N·m) 140 72 105 143 48 70 95 118 140
30min power(kW) 15 11 15 18.5 11 15 18.5 22 30
30min current(A) 41 29 40.2 56 26 34 42 54.7 73
30min torque(N·m) 191 105 143 177 70 95 118 140 191
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500 1500
Constant power range(r/min) 750~3500 1000~4000 1000~4000 1000~4000 1500~5000 1500~5000 1500~5000 1500~5000 1500-5000
Max. speed(r/min) 4500 7000 7000 7000 7000 7000 7000 7000 7000
Moment of inertia(kg·m2) 0. 0571 0. 0571 0.571 0.0869 0. 0571 0.571 0.571 0.571 0.1043
Weight(kg) 143 89 125 143 89 107 125 143 162
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 70W 0.21A
 Overall dimension
 (refer to figures)
A 265 265 265 265 265 265 265 265 265
B 132 132 132 132 132 132 132 132 132
C 185 185 185 185 185 185 185 185 185
D 265 265 265 265 265 265 265 265 265
E 110 110 110 110 110 110 110 110 110
F 577 442 532 577 442 487 532 577 632
G 437 302 392 437 302 347 392 437 492
H 230h7 230h7 230h7 230h7 230h7 230h7 230h7 230h7 230h7
I 14 14 14 14 14 14 14 14 14
J 55h6 48h6 48h6 48h6 48h6 48h6 48h6 55h6 55h6
K 256 256 256 256 256 256 256 256 256
L 135 135 135 135 135 135 135 135 135
N 230 230 230 230 230 230 230 230 230
P 40 40 40 40 40 40 40 40 40
Q 360 225 315 360 225 270 315 360 415
S 110 110 110 110 110 110 110 110 110
T 5 5 5 5 5 5 5 5 5
Z 15 15 15 15 15 15 15 15 15

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-6)

     Model ZJY265A-7.5BH ZJY265A-11BH ZJY265A-15BH ZJY320A-18.5WL ZJY320A-22WL ZJY320A-30BL ZJY320A-37BL ZJY320A-45BL
Item
Rated power(kW) 7.5 11 15 18.5 22 30 37 45
Adaptive driver  GS/GR3100 GS/GR3148 GS/GR3150 GS/GR3198 GS/GR3198 GS/GR3300 GS/GR3300 GS/GR3300
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 21 30 40.7 51 58 69 87 100
Rated 51.7 51.7 51.7 26.1 26 51.2 51.1 51.1
frequency(Hz)
Rated torque(N·m) 48 70 95 235 280 191 235 286
30min power(kW) 11 15 18.5 22 30 37 45 55
30min current(A) 28.5 38.3 42.7 59 73 83 102 115
30min torque(N·m) 70 95 118 280 381 235 286 352
Rated speed(r/min) 1500 1500 1500 750 750 1500 1500 1500
Constant power range(r/min) 1500~8000 1500~8000 1500~8000 750~3500 750~3500 1500~4500 1500~4500 1500~4500
Max. speed(r/min) 10000 10000 10000 4500 4500 4500 4500 4500
Moment of inertia(kg·m2) 0. 0571 0.571 0.571 0.2997 0.345 0.24 0.2997 0.348
Weight(kg) 89 107 125 249 285 208 249 293
Installation type IM B5 or B3  IM B35
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 70W 0.21A Three-phase AC 380~440V 50/60Hz 60W 0.22A
 Overall dimension
 (refer to figures)
A 265 265 265 320 320 320 320 320
B 132 132 132 \ \ \ \ \
C 185 185 185 193 193 193 193 193
D 265 265 265 350 350 350 350 350
E 110 110 110 140 140 140 140 140
F 442 487 532 715 765 645 715 785
G 302 347 392 450 500 380 450 520
H 230h7 230h7 230h7 300h7 300h7 300h7 300h7 300h7
I 14 14 14 19 19 19 19 19
J 48h6 48h6 48h6 60h6 60h6 60h6 60h6 60h6
K 256 256 256 \ \ \ \ \
L 135 135 135 165 165 165 165 165
N 230 230 230 279 279 279 279 279
P 40 40 40 50 50 50 50 50
Q 225 270 315 529 579 459 529 599
S 110 110 110 \ \ \ \ \
T 5 5 5 5 5 5 5 5
Z 15 15 15 19 19 19 19 19

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-1)

     Model ZJY182A-3.7BL ZJY182A-5.5BL ZJY182A-1.5BH ZJY182A-2.2BH ZJY182A-3.7BH ZJY182A-5.5BH ZJY182A-3.7EG ZJY182A-5.5EG ZJY182A-7.5EG
Item
Rated power(kW) 3.7 5.5 1.5 2.2 3.7 5.5 3.7 5.5 7.5
Adaptive driver  GS/GR2075 GS/GR2100 GS/GR2050 GS/GR2050 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2148
Drive power supply(V) Three-phase AC 220V  50/60Hz
Rated current(A) 17.9 23.9 10.7 12.9 23.5 30 20 28.8 35
Rated 53.7 53.5 53.9 53.6 53.1 53.5 103.2 103.3 103.2
frequency(Hz)
Rated torque(N·m) 24 35 9.5 14 24 35 11.8 17.5 24
30min power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 5.5 7.5 11
30min current(A) 25.2 31.1 17.6 20 36.4 40.7 26.7 35.8 47.3
30min torque(N·m) 35 48 14 24 35 48 17.5 24 35
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 3000 3000 3000
Constant power range(r/min) 1500-4500 1500-4500 1500~8000 1500~8000 1500~8000 1500~8000 3000~12000 3000~12000 3000~12000
Max. speed(r/min) 4500 4500 10000 10000 10000 10000 15000 15000 15000
Moment of inertia(kg·m2) 0.0068 0.5712 0.004 0.0054 0.0083 0.5712 0.0054 0.0068 0.0083
Weight(kg) 37 52 27 32 43 52 32 37 43
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 220V 50/60Hz 37W 0.1A
 Overall dimension
 (refer to figures)
A 182 182 182 182 182 182 182 182 182
B 91 91 91 91 91 91 91 91 91
C 123 123 123 123 123 123 123 123 123
D 185 185 185 185 185 185 185 185 185
E 60 60 60 60 60 60 60 60 60
F 371 436 319 346 401 436 346 371 401
G 249 314 197 224 279 314 224 249 279
H 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7
I 12 12 12 12 12 12 12 12 12
J 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6
K 184 184 158 158 158 158 158 158 158
L 93 93 93 93 93 93 93 93 93
N 156 156 156 156 156 156 156 156 156
P 32 32 32 32 32 32 32 32 32
Q 184 249 132 159 214 249 159 184 214
S 60 60 60 60 60 60 60 60 60
T 4 4 4 4 4 4 4 4 4
Z 12 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-2)

     Model ZJY208A-3.7WL ZJY208A-2.2AM ZJY208A-3.7AM ZJY208A-5.5AM ZJY208A-5.5BL ZJY208A-7.5BL ZJY208A-9BL ZJY208A-3.7BM
Item
Rated power(kW) 3.7 2.2 3.7 5.5 5.5 7.5 9 3.7
Adaptive driver  GS/GR2075 GS/GR2050 GS/GR2075 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2148 GS/GR2075
Drive power supply(V) Three-phase AC 220V  50/60Hz
Rated current(A) 19.6 11.6 17.7 28.2 22.4 31 37.5 14.9
Rated 27.3 35.7 35.7 35.7 53.3 52.9 52.6 52.9
frequency(Hz)
Rated torque(N·m) 47 21 35 53 35 48 57.3 24
30min power(kW) 5.5 3.7 5.5 7.5 7.5 11 12 5.5
30min current(A) 27.3 18.4 24.6 35.5 28 41.3 46.2 22
30min torque(N·m) 70 35 53 72 48 70 76.4 35
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500
Constant power range(r/min) 750-3500 1000-4000 1000~4000 1000~4000 1500~4500 1500~4500 1500~4500 1500~5000
Max. speed(r/min) 4500 7000 7000 7000 4500 4500 4500 7000
Moment of inertia(kg·m2) 0.571 0.0142 0.0196 0.571 0.0143 0.0196 0.571 0.0142
Weight(kg) 77 51 66 77 51.5 66 77.5 51
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 220V 50/60Hz 40W 0.14A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 60 80 80 80 80 110 60
F 524 414 469 524 414 469 524 414
G 395 285 340 395 285 340 395 285
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 28h6 38h6 38h6 38h6 38h6 48h6 28h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 320 210 265 320 210 265 320 210
S 80 80 80 80 80 80 110 60
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-3)
The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-4)
The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-5)
The main technical parameters of dual speed  motor and its overall dimension(List 3)

 

Company Profile

 

GSK CNC Equipment Co., Ltd.

GSK CNC Equipment Co., Ltd. (hereinafter referred as GSK) is specially devoted to conducting research and practice of basic equipment industrial development, providing “trinity” packaged solutions of machine tool CNC system, servo drive and servo motor, taking initiative in the expansion of industrial robot and all-electric injection molding machine field, developing the new marketing mode of machine tool exhibition hall, providing the customers with all-round professional machine tool remanufacturing solutions and services, promoting the integration of production and education, setting up the vocational education and training institute, as well as conducting highly skilled CNC personnel training. It has developed into a high-tech enterprise integrating science, education, industry and trade, thus being known as “China Southern CNC Industrial Base”. 
Adhering to the corporate philosophy of “making itself a century-old enterprise and building gold quality” and the service spirit of “keeping improvement and making users satisfied”, GSK enhances the user product value & benefits through continuous technological progress and innovation, and makes unremitting efforts to promote the localization process of basic equipment industry, improve the technological level of the industry, and promote the development of China’s national equipment manufacturing industry. 

Main products:

                            GSK CNC System                                                                          Idustrial robot  

Full electric injection molding machine                                              CNC machine

       

     International exhibition

 Exhibition hall
218MC USB Reading Problem Solution
218MC USB Reading Problem Solution

FAQ

Payments

1) We can accept EXW, FOB
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
3) Please check the package CHINAMFG receipt, if there are some damages, please contact us immediately.
Feedback & Refund
1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

If you need more information, please contact with us. We will attach great importance to your any problems.
Hope we could establish a long-term effective cooperation.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Starting Mode: Auto-induction Voltage-reduced Starting
Customization:
Available

|

induction motor

What role do AC motors play in HVAC (heating, ventilation, and air conditioning) systems?

In HVAC (heating, ventilation, and air conditioning) systems, AC motors play a crucial role in various components and functions. These motors are responsible for powering fans, compressors, pumps, and other essential equipment within the HVAC system. Let’s explore the specific roles of AC motors in HVAC systems:

  • Air Handling Units (AHUs) and Ventilation Systems: AC motors drive the fans in AHUs and ventilation systems. These fans draw in fresh air, circulate air within the building, and exhaust stale air. The motors provide the necessary power to move air through the ductwork and distribute it evenly throughout the space. They play a key role in maintaining proper indoor air quality, controlling humidity, and ensuring adequate ventilation.
  • Chillers and Cooling Towers: HVAC systems that use chillers for cooling rely on AC motors to drive the compressor. The motor powers the compressor, which circulates refrigerant through the system, absorbing heat from the indoor environment and releasing it outside. AC motors are also used in cooling towers, which dissipate heat from the chiller system by evaporating water. The motors drive the fans that draw air through the cooling tower and enhance heat transfer.
  • Heat Pumps: AC motors are integral components of heat pump systems, which provide both heating and cooling. The motor drives the compressor in the heat pump, enabling the transfer of heat between the indoor and outdoor environments. During cooling mode, the motor circulates refrigerant to extract heat from indoors and release it outside. In heating mode, the motor reverses the refrigerant flow to extract heat from the outdoor air or ground and transfer it indoors.
  • Furnaces and Boilers: In heating systems, AC motors power the blowers or fans in furnaces and boilers. The motor drives the blower to distribute heated air or steam throughout the building. This helps maintain a comfortable indoor temperature and ensures efficient heat distribution in the space.
  • Pumps and Circulation Systems: HVAC systems often incorporate pumps for water circulation, such as in hydronic heating or chilled water systems. AC motors drive these pumps, providing the necessary pressure to circulate water or other heat transfer fluids through the system. The motors ensure efficient flow rates and contribute to the effective transfer of thermal energy.
  • Dampers and Actuators: AC motors are used in HVAC systems to control airflow and regulate the position of dampers and actuators. These motors enable the adjustment of airflow rates, temperature control, and zone-specific climate control. By modulating the motor speed or position, HVAC systems can achieve precise control of air distribution and temperature in different areas of a building.

AC motors in HVAC systems are designed to meet specific performance requirements, such as variable speed control, energy efficiency, and reliable operation under varying loads. Maintenance and regular inspection of these motors are essential to ensure optimal performance, energy efficiency, and longevity of the HVAC system.

In conclusion, AC motors play vital roles in HVAC systems by powering fans, compressors, pumps, and actuators. They enable proper air circulation, temperature control, and efficient transfer of heat, contributing to the overall comfort, air quality, and energy efficiency of buildings.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

What are the key advantages of using AC motors in industrial applications?

AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:

  1. Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
  2. Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
  3. High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
  4. Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
  5. Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
  6. Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
  7. Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.

These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.

China OEM GSK ZJY Industrial Motor Three Phase Compact Type Asynchronous AC Motor 380V 3.7kw   vacuum pump oil	China OEM GSK ZJY Industrial Motor Three Phase Compact Type Asynchronous AC Motor 380V 3.7kw   vacuum pump oil
editor by CX 2024-04-11

China supplier Yrkk Heavy Duty High Voltage Slip Ring Ball Re-Rolling Mill AC Motor with high quality

Product Description

The high-voltage slip ring motor is a wound-type three-phase asynchronous motor. The power rating, installation dimensions and electrical performance of this type of motor are in compliance with relevant IEC standards. The basic installation method of the motor is the horizontal bottom angle (IMB3), the working system is the continuous working system (S1), and the wound rotor is made of Class F insulation material.
The bearings of high voltage slip ring motors are available in both rolling and plain bearings, depending on the motor power and speed. The rated frequency of the motor’s power supply is 50Hz, the rated voltage is 6000V/10000V, and the basic type of protection is IP54. The motor slip ring housing can be protected to IP22 or IP23. Other voltage, frequency and degree of protection motors are also available CHINAMFG request.
High-voltage slip ring motors can be used to drive a variety of different machinery, such as compressors, pumps, crushers, cutting machine tools, transportation machinery and other mechanical equipment, in mining, machinery industry, petrochemical industry, power plants and other industrial and mining Used as a prime mover in an enterprise. The motor used to drive the blower, coal mill, rolling mill and winch should indicate the purpose and technical requirements when ordering, and adopt special design to ensure reliable operation.

Center height range: H355 ~ 800mm
Power range: 185kW ~ 5000kW
Number of poles: 2/4/6/8/10/12/16
Rated voltage: 3000V/3300V/6000V/6600V/10000V/11000V
Rated frequency: 50HZ/60HZ
Protection level: IP54 or IP55
Insulation class: F
Work system: S1 (continuous)
Cooling method: IC611/IC616
Installation form: IMB3
Motor connection: Y (three outlet terminals in the junction box, the junction box from the extension of the spindle is located on the right side of the base)
Altitude: no more than 1000m
This type of motor is suitable for use in environments where the ambient air temperature does not exceed 40 ° C and there is no serious dust, the minimum ambient air temperature is -15 ° C, and there is no corrosive and explosive gas in the air (which can also be made into a damp heat or high-altitude motor).

The high-voltage slip ring motor adopts a box structure, and the frame is welded by steel plate, which is light in weight and good in rigidity.
The high voltage slip ring motor is a closed-structure motor with an air-to-air cooler at the top. The stator winding adopts Class F heat-resistant insulating material, and the top binding is reliable, and the vacuum pressure immersion paint makes the motor have good insulation performance and mechanical strength.
The rotor of the high voltage slip ring motor uses a winding structure of a copper conductor. Bearings are available in both rolling and plain bearings, depending on the speed and power of the motor.

There are many types of motor products manufactured and sold by our company. The main products are high- and low-voltage three-phase asynchronous motors. The motor structure types include squirrel-cage type and winding type. Among them, high-voltage synchronous motors mainly support air compressors and mine ball mill equipment. use. We adhere to the service tenet of “focus on products, service with heart” and provide high-quality motor products to customers.

The company has large-scale laboratory, intelligent CNC winding machine, CNC rising machine, automatic wrapping machine, VPI high pressure vacuum immersion system, large-scale dipping paint drying furnace, 60 tons test platform, large vertical car, milling machine, grinding machine, Each type of dynamic balancing machine, double-feedback test and detection system with 6MW (12MW) motor and other motor production professional equipment more than 500 sets, sound mechanical equipment processing capacity, to lay a good foundation for customers to improve good quality motor products.

1. The outer packaging of the products are all standard export-oriented wooden plywood packaging.
2, the product packaging is protected by moisture, water plastic soft packaging
3. For products with special transportation requirements (such as temperature, fragile, variability, and easy to get wet), the packaging protection measures will be strengthened, and the target mark will be printed on the package.
4. There are obvious signs and symbols on the packing box that must be paid attention to during transportation and storage (such as position, moisture, rain, shockproof, lifting position, etc.).

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Yrkk
Rotor Structure: Winding Type
Casing Protection: Protection Type
Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Can you explain the difference between single-phase and three-phase AC motors?

In the realm of AC motors, there are two primary types: single-phase and three-phase motors. These motors differ in their construction, operation, and applications. Let’s explore the differences between single-phase and three-phase AC motors:

  • Number of Power Phases: The fundamental distinction between single-phase and three-phase motors lies in the number of power phases they require. Single-phase motors operate using a single alternating current (AC) power phase, while three-phase motors require three distinct AC power phases, typically referred to as phase A, phase B, and phase C.
  • Power Supply: Single-phase motors are commonly connected to standard residential or commercial single-phase power supplies. These power supplies deliver a voltage with a sinusoidal waveform, oscillating between positive and negative cycles. In contrast, three-phase motors require a dedicated three-phase power supply, typically found in industrial or commercial settings. Three-phase power supplies deliver three separate sinusoidal waveforms with a specific phase shift between them, resulting in a more balanced and efficient power delivery system.
  • Starting Mechanism: Single-phase motors often rely on auxiliary components, such as capacitors or starting windings, to initiate rotation. These components help create a rotating magnetic field necessary for motor startup. Once the motor reaches a certain speed, these auxiliary components may be disconnected or deactivated. Three-phase motors, on the other hand, typically do not require additional starting mechanisms. The three-phase power supply inherently generates a rotating magnetic field, enabling self-starting capability.
  • Power and Torque Output: Three-phase motors generally offer higher power and torque output compared to single-phase motors. The balanced nature of three-phase power supply allows for a more efficient distribution of power across the motor windings, resulting in increased performance capabilities. Three-phase motors are commonly used in applications requiring high power demands, such as industrial machinery, pumps, compressors, and heavy-duty equipment. Single-phase motors, with their lower power output, are often used in residential appliances, small commercial applications, and light-duty machinery.
  • Efficiency and Smoothness of Operation: Three-phase motors typically exhibit higher efficiency and smoother operation than single-phase motors. The balanced three-phase power supply helps reduce electrical losses and provides a more constant and uniform torque output. This results in improved motor efficiency, reduced vibration, and smoother rotation. Single-phase motors, due to their unbalanced power supply, may experience more pronounced torque variations and slightly lower efficiency.
  • Application Suitability: The choice between single-phase and three-phase motors depends on the specific application requirements. Single-phase motors are suitable for powering smaller appliances, such as fans, pumps, household appliances, and small tools. They are commonly used in residential settings where single-phase power is readily available. Three-phase motors are well-suited for industrial and commercial applications that demand higher power levels and continuous operation, including large machinery, conveyors, elevators, air conditioning systems, and industrial pumps.

It’s important to note that while single-phase and three-phase motors have distinct characteristics, there are also hybrid motor designs, such as dual-voltage motors or capacitor-start induction-run (CSIR) motors, which aim to bridge the gap between the two types and offer flexibility in certain applications.

When selecting an AC motor, it is crucial to consider the specific power requirements, available power supply, and intended application to determine whether a single-phase or three-phase motor is most suitable for the task at hand.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China supplier Yrkk Heavy Duty High Voltage Slip Ring Ball Re-Rolling Mill AC Motor   with high quality China supplier Yrkk Heavy Duty High Voltage Slip Ring Ball Re-Rolling Mill AC Motor   with high quality
editor by CX 2024-04-11

China Standard High Speed NEMA24 48V AC 400W 1.27n. M 3000rpm Electric Brushless CNC Servo Motor for Robotic Arm vacuum pump for ac

Product Description

High speed nema24 48V AC 4; Cel: ;

FAQ:

 1. Factory or trader?
We are factory, and have professional R&D team as introduced in company information.

2. How about the delivery?
– Sample: 3-5 days.
– Bulk order: 15-30 days.

3. What is your after-sales services?
1. Free maintenance within 12 months guarantee, lifetime consultant.
2. Professional solutions in installation and maintence.

4. Why choose us?
1. Factory Price & 24/7 after-sale services.
2. From mold customization to material processing and welding, from fine components to finished assembly, 72 processes, 24 control points, strict aging, finished product inspection.

5. Do you get the relevant certification?
All products are made according to ISO9001, CE requirements.

If any terms get your interest, please CLICK BELOW to send a message to us!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Robotic Arm
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 8
Samples:
US$ 92/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Standard High Speed NEMA24 48V AC 400W 1.27n. M 3000rpm Electric Brushless CNC Servo Motor for Robotic Arm   vacuum pump for ac	China Standard High Speed NEMA24 48V AC 400W 1.27n. M 3000rpm Electric Brushless CNC Servo Motor for Robotic Arm   vacuum pump for ac
editor by CX 2024-04-11

China high quality Low MOQ 1.5kw 7.5kw 8.5kw 10kw 40kw 50kw 150kw 7.5 200 Kw 3000W 15000W 10000 20000 Watt Three Phase AC Electric Induction Motor vacuum pump electric

Product Description

           
                1HMA/IE1 Aluminium Series Premium efficiency Three Phase Asynchronous Motor is the basic series of general-purpose motor with low voltage upgraded of Y series motor.
               The 1HMA Series Motors are enhanced performance motors built in light weight, all aluminum frames.
               1HMA/IE1  Series Motors with beautiful appearance and reliable operation meet to the needs of general-purpose at domestic and overseas within the range of frame size 80 to 160.
               1HMA/IE1  Aluminium Series Premium efficiency Motors are designed of high efficiency, energy saving, high quality performance, small vibration, low noise, long life, high reliability, easy maintenance and large start torque, etc. The mounting dimension and power totally conform to IEC standard.

1HMA/IE1  Aluminium series premium efficiency Motor

1HMA/IE1 Series Aluminum Housing Motor Characteristics and advantages

Efficiency Class:IE1
Frame Size: H56-400
Poles: 2,4,6 poles
Rated Power: 0.06KW-560KW
Rated Voltage: 220/380V,380/660V,230/400V,400V/690V
Frequency: 50HZ,60HZ
Protection Class: IP44,IP54,IP55C
Insulation Class: B,F,H 
Mounting Type:B3,B5,B14,B35multi and pad mounting
Ambient Temperature : -20~+40 °C
Altitude: ≤1000M
 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Winding Type
Casing Protection: Protection Type
Samples:
US$ 33.94/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

How do variable frequency drives (VFDs) impact the performance of AC motors?

Variable frequency drives (VFDs) have a significant impact on the performance of AC motors. A VFD, also known as a variable speed drive or adjustable frequency drive, is an electronic device that controls the speed and torque of an AC motor by varying the frequency and voltage of the power supplied to the motor. Let’s explore how VFDs impact AC motor performance:

  • Speed Control: One of the primary benefits of using VFDs is the ability to control the speed of AC motors. By adjusting the frequency and voltage supplied to the motor, VFDs enable precise speed control over a wide range. This speed control capability allows for more efficient operation of the motor, as it can be operated at the optimal speed for the specific application. It also enables variable speed operation, where the motor speed can be adjusted based on the load requirements, resulting in energy savings and enhanced process control.
  • Energy Efficiency: VFDs contribute to improved energy efficiency of AC motors. By controlling the motor speed based on the load demand, VFDs eliminate the energy wastage that occurs when motors run at full speed even when the load is light. The ability to match the motor speed to the required load reduces energy consumption and results in significant energy savings. In applications where the load varies widely, such as HVAC systems, pumps, and fans, VFDs can provide substantial energy efficiency improvements.
  • Soft Start and Stop: VFDs offer soft start and stop capabilities for AC motors. Instead of abruptly starting or stopping the motor, which can cause mechanical stress and electrical disturbances, VFDs gradually ramp up or down the motor speed. This soft start and stop feature reduces mechanical wear and tear, extends the motor’s lifespan, and minimizes voltage dips or spikes in the electrical system. It also eliminates the need for additional mechanical devices, such as motor starters or brakes, improving overall system reliability and performance.
  • Precision Control and Process Optimization: VFDs enable precise control over AC motor performance, allowing for optimized process control in various applications. The ability to adjust motor speed and torque with high accuracy enables fine-tuning of system parameters, such as flow rates, pressure, or temperature. This precision control enhances overall system performance, improves product quality, and can result in energy savings by eliminating inefficiencies or overcompensation.
  • Motor Protection and Diagnostic Capabilities: VFDs provide advanced motor protection features and diagnostic capabilities. They can monitor motor operating conditions, such as temperature, current, and voltage, and detect abnormalities or faults in real-time. VFDs can then respond by adjusting motor parameters, issuing alerts, or triggering shutdowns to protect the motor from damage. These protection and diagnostic features help prevent motor failures, reduce downtime, and enable predictive maintenance, resulting in improved motor reliability and performance.
  • Harmonics and Power Quality: VFDs can introduce harmonics into the electrical system due to the switching nature of their operation. Harmonics are undesirable voltage and current distortions that can impact power quality and cause issues in the electrical distribution network. However, modern VFDs often include built-in harmonic mitigation measures, such as line reactors or harmonic filters, to minimize harmonics and ensure compliance with power quality standards.

In summary, VFDs have a profound impact on the performance of AC motors. They enable speed control, enhance energy efficiency, provide soft start and stop capabilities, enable precision control and process optimization, offer motor protection and diagnostic features, and address power quality considerations. The use of VFDs in AC motor applications can lead to improved system performance, energy savings, increased reliability, and enhanced control over various industrial and commercial processes.

induction motor

How do AC motors contribute to the functioning of household appliances?

AC motors play a crucial role in the functioning of numerous household appliances by converting electrical energy into mechanical energy. These motors are used in a wide range of devices, powering various components and performing essential tasks. Let’s explore how AC motors contribute to the functioning of household appliances:

  • Kitchen Appliances: AC motors are found in various kitchen appliances, such as refrigerators, freezers, dishwashers, and blenders. In refrigerators and freezers, AC motors drive the compressor, which circulates the refrigerant and maintains the desired temperature. Dishwashers use AC motors to power the water pumps, spray arms, and the motorized detergent dispenser. Blenders utilize AC motors to rotate the blades and blend ingredients.
  • Laundry Appliances: AC motors are integral to laundry appliances like washing machines and clothes dryers. Washing machines rely on AC motors to power the agitator or the drum, facilitating the washing and spinning cycles. Clothes dryers use AC motors to rotate the drum and operate the blower fan, facilitating the drying process.
  • Vacuum Cleaners: Vacuum cleaners utilize AC motors to generate suction and drive the motorized brush or beater bar. These motors power the fan or impeller, creating the necessary airflow for effective cleaning.
  • Fans and Air Circulation: AC motors are employed in various types of fans, including ceiling fans, table fans, and pedestal fans. These motors drive the fan blades, producing airflow and facilitating air circulation to provide cooling or ventilation in rooms. Additionally, AC motors power exhaust fans used in kitchens, bathrooms, and range hoods to remove odors, smoke, or excess moisture.
  • Air Conditioning and Heating Systems: AC motors are critical components in air conditioning and heating systems. They power the compressor, condenser fan, and blower fan, which are responsible for circulating refrigerant, dissipating heat, and delivering conditioned air throughout the house. AC motors enable the regulation of temperature and humidity levels, ensuring comfort in residential spaces.
  • Garage Door Openers: AC motors are utilized in garage door openers to drive the mechanism responsible for opening and closing the garage door. These motors generate the necessary torque to lift or lower the door smoothly and efficiently.
  • Other Appliances: AC motors are also found in a variety of other household appliances. For instance, they power pumps in water heaters, swimming pool filters, and sump pumps. AC motors are used in dehumidifiers, humidifiers, and air purifiers to drive the fans and other internal components. They are also present in audiovisual equipment, such as DVD players, record players, and fans used for cooling electronics.

In summary, AC motors are essential components in household appliances, enabling their proper functioning and delivering the mechanical energy required for various tasks. From kitchen appliances to laundry machines, fans, air conditioning systems, and more, AC motors provide the necessary power and functionality to enhance our daily lives.

induction motor

What is an AC motor, and how does it differ from a DC motor?

An AC motor, also known as an alternating current motor, is a type of electric motor that operates on alternating current. It converts electrical energy into mechanical energy through the interaction of magnetic fields. AC motors are widely used in various applications, ranging from household appliances to industrial machinery. Here’s a detailed explanation of what an AC motor is and how it differs from a DC motor:

AC Motor:

An AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. These windings are typically made of copper wire and are arranged in specific configurations to create a rotating magnetic field when energized by an alternating current. The rotor, on the other hand, is the rotating part of the motor and is typically made of laminated steel cores with conducting bars or coils. The rotor windings are connected to a shaft, and their interaction with the rotating magnetic field produced by the stator causes the rotor to rotate.

The operation of an AC motor is based on the principles of electromagnetic induction. When the stator windings are energized with an AC power supply, the changing magnetic field induces a voltage in the rotor windings, which in turn creates a magnetic field. The interaction between the rotating magnetic field of the stator and the magnetic field of the rotor produces a torque, causing the rotor to rotate. The speed of rotation depends on the frequency of the AC power supply and the number of poles in the motor.

DC Motor:

A DC motor, also known as a direct current motor, operates on direct current. Unlike an AC motor, which relies on the interaction of magnetic fields to generate torque, a DC motor uses the principle of commutation to produce rotational motion. A DC motor consists of a stator and a rotor, similar to an AC motor. The stator contains the stator windings, while the rotor consists of a rotating armature with coils or permanent magnets.

In a DC motor, when a direct current is applied to the stator windings, a magnetic field is created. The rotor, either through the use of brushes and a commutator or electronic commutation, aligns itself with the magnetic field and begins to rotate. The direction of the current in the rotor windings is continuously reversed to ensure continuous rotation. The speed of a DC motor can be controlled by adjusting the voltage applied to the motor or by using electronic speed control methods.

Differences:

The main differences between AC motors and DC motors are as follows:

  • Power Source: AC motors operate on alternating current, which is the standard power supply in most residential and commercial buildings. DC motors, on the other hand, require direct current and typically require a power supply that converts AC to DC.
  • Construction: AC motors and DC motors have similar construction with stators and rotors, but the design and arrangement of the windings differ. AC motors generally have three-phase windings, while DC motors can have either armature windings or permanent magnets.
  • Speed Control: AC motors typically operate at fixed speeds determined by the frequency of the power supply and the number of poles. DC motors, on the other hand, offer more flexibility in speed control and can be easily adjusted over a wide range of speeds.
  • Efficiency: AC motors are generally more efficient than DC motors. AC motors can achieve higher power densities and are often more suitable for high-power applications. DC motors, however, offer better speed control and are commonly used in applications that require precise speed regulation.
  • Applications: AC motors are widely used in applications such as industrial machinery, HVAC systems, pumps, and compressors. DC motors find applications in robotics, electric vehicles, computer disk drives, and small appliances.

In conclusion, AC motors and DC motors differ in their power source, construction, speed control, efficiency, and applications. AC motors rely on the interaction of magnetic fields and operate on alternating current, while DC motors use commutation and operate on direct current. Each type of motor has its advantages and is suited for different applications based on factors such as power requirements, speed control needs, and efficiency considerations.

China high quality Low MOQ 1.5kw 7.5kw 8.5kw 10kw 40kw 50kw 150kw 7.5 200 Kw 3000W 15000W 10000 20000 Watt Three Phase AC Electric Induction Motor   vacuum pump electricChina high quality Low MOQ 1.5kw 7.5kw 8.5kw 10kw 40kw 50kw 150kw 7.5 200 Kw 3000W 15000W 10000 20000 Watt Three Phase AC Electric Induction Motor   vacuum pump electric
editor by CX 2024-04-11

China best 30kw Ye2 Series Water Pump Three-Phase AC Electric Induction Asynchronous Motor vacuum pump booster

Product Description

Product Description

Features: High efficiency and energy saving, low noise and little vibration. Insulation class: F;Protection class:IP54 or IP55.

General purpose including cutting machines, pumps, fans, conveyors, machines tools of farm duty and food process.

The altitude not exceeding 1000m above sea level. The ambient temperature subject to seasonal variations but no exceeding+40ºC and not less than-15ºC.

Company Profile

ZheJiang Lanyoung Electromechanical Co., Ltd was originated from 1988, established in 2001, it owns ZheJiang Lanyoung Electromechanical Co., Ltd HangZhouShan City Branch and ZHangZhoug HangZhouang Electromechanical Co., Ltd, won the honorary title of “top 10 brands of brand network in 2019” and “excellent demonstration unit of ZHangZhoug focusing on quality and brand-making”. We are a modern company combining mechanical and electrical products research, development, production, sales and service with a long history and rich experience in production. We are experts of water pumps, motors, and fans products, the main products are stainless steel pumps, plastic corrosion-resistant submersible pumps, DC electric pumps, self-priming pump, machine tool cooling pumps, corrosion resistant pumps, sewage pumps, oil-immersed submersible pumps, blowers, medium pressure fan, multi-wing fan and so on, and we also possess practical new-type patent for a mini submersible pump. The above products can be all customized according to customer’s requirement. We have special advantages that is different from other manufacturing companies.

Product Parameters

Type  Power Pole/Speed Volt/Frequency Insulation Protection Motor housing Mount
 kw /HP
80M2 0.55/0.75 6/885rpm 380V/50HZ class F IP55 Cast Iron B3
90S 0.75/1 6/910rpm 380V/50HZ class F IP55 Cast Iron B3
90L 1.1/1.5 6/910rpm 380V/50HZ class F IP55 Cast Iron B3
100L 1.5/2 6/940rpm 380V/50HZ class F IP55 Cast Iron B3
112M 2.2/3 6/940rpm 380V/50HZ class F IP55 Cast Iron B3
132S 3/4 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
132M1 4/5.5 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
132M2 5.5/7.5 6/960rpm 380V/50HZ class F IP55 Cast Iron B3
160M 7.5/10 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
160L 11/15 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
180L 15/20 6/970rpm 380V/50HZ class F IP55 Cast Iron B3
200L1 18.5/25 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
200L2 22/30 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
225M 30/40 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
250M 37/50 6/980rpm 380V/50HZ class F IP55 Cast Iron B3
280S 45/60 6/985rpm 380V/50HZ class F IP55 Cast Iron B3
280M 55/75 6/985rpm 380V/50HZ class F IP55 Cast Iron B3
315S 75/100 6/990rpm 380V/50HZ class F IP55 Cast Iron B3

Detailed Photos

 

Packaging & Shipping

 

Certifications

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 29/Piece
1 Piece(Min.Order)

|

Order Sample

Blue
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

induction motor

Can AC motors be used in both residential and commercial settings?

Yes, AC motors can be used in both residential and commercial settings. The versatility and wide range of applications of AC motors make them suitable for various environments and purposes.

In residential settings, AC motors are commonly found in household appliances such as refrigerators, air conditioners, washing machines, fans, and pumps. These motors are designed to meet the specific requirements of residential applications, providing reliable and efficient operation for everyday tasks. For example, air conditioners utilize AC motors to drive the compressor and fan, while washing machines use AC motors for agitating and spinning the drum.

In commercial settings, AC motors are extensively used in a wide range of applications across different industries. They power machinery, equipment, and systems that are crucial for commercial operations. Some common examples include:

  • Industrial machinery and manufacturing equipment: AC motors drive conveyor belts, pumps, compressors, mixers, fans, blowers, and other machinery used in manufacturing, production, and processing facilities.
  • HVAC systems: AC motors are used in commercial heating, ventilation, and air conditioning (HVAC) systems to drive fans, blowers, and pumps for air circulation, cooling, and heating.
  • Commercial refrigeration: AC motors are utilized in commercial refrigeration systems for powering compressors, condenser fans, and evaporator fans in supermarkets, restaurants, and cold storage facilities.
  • Office equipment: AC motors are present in various office equipment such as printers, photocopiers, scanners, and ventilation systems, ensuring their proper functioning.
  • Transportation: AC motors are used in electric vehicles, trams, trains, and other forms of electric transportation systems, providing the necessary propulsion.
  • Water and wastewater treatment: AC motors power pumps, mixers, and blowers in water treatment plants, wastewater treatment plants, and pumping stations.

The adaptability, efficiency, and controllability of AC motors make them suitable for a wide range of residential and commercial applications. Whether it’s powering household appliances or driving industrial machinery, AC motors play a vital role in meeting the diverse needs of both residential and commercial settings.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China best 30kw Ye2 Series Water Pump Three-Phase AC Electric Induction Asynchronous Motor   vacuum pump booster	China best 30kw Ye2 Series Water Pump Three-Phase AC Electric Induction Asynchronous Motor   vacuum pump booster
editor by CX 2024-04-11

China Standard in Stock CHINAMFG Original AC Servo Motor Hc-Sfs52 vacuum pump ac

Product Description

In stock CHINAMFG original AC Servo Motor HC-SFS52
We can supply Inverter ,Servo Motor,PLC and HMI at good price, please feel free to contact us!
 

Product Parameters

Product Name Servo Motor
Brand Mitsubishi
Model HC-SFS52
Series HC
Warranty 1 Year
Application Industrial Ect
Technical consulting support Yes

 

Real Picture

Company Profile

ZheJiang CHINAMFG Xing Trading Co.,Ltd is a professional supplier of Inverter,Servo Motor,PLC And HMI with 20 years production experience.
Our main products Inverter,Servo Motor,PLC And HMI are widely applied to the field of industrial automation control.
We guaranteed 100% new brand original, and we have a lot of stock with fast delivery. The technical support and after sale service
is provided and customer’s questions will be responded in the first time.

 

Main Products:

1. Servo system products
2. Linear motion products
3. Sensor products
4. Frequency converter, PLC,

FAQ

1.Q: How about the warranty ?

A: Aiwell provide 12 months warranty for all the goods from us , and you can refund the goods with any quality problem in 15 days.

2.Q: Other supplier have a better pice than yours.

A: “To create more benefit fir clients”is our belief, if you have a better price , please let Aiwell know , we will try best to meet your price and support you.

3.Q: We have not cooperated before , how can we believe you ?

A: For our first order , you can pay after we prepare the goods.

4.Q: What about shipment ?

A: We have DHL forwarder with competitive price , of course , cutsomers can also use their own freight forwarders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

induction motor

Can you explain the concept of motor efficiency and how it relates to AC motors?

Motor efficiency is a measure of how effectively an electric motor converts electrical power into mechanical power. It represents the ratio of the motor’s useful output power (mechanical power) to the input power (electrical power) it consumes. Higher efficiency indicates that the motor converts a larger percentage of the electrical energy into useful mechanical work, while minimizing energy losses in the form of heat and other inefficiencies.

In the case of AC motors, efficiency is particularly important due to their wide usage in various applications, ranging from residential appliances to industrial machinery. AC motors can be both induction motors, which are the most common type, and synchronous motors, which operate at a constant speed synchronized with the frequency of the power supply.

The efficiency of an AC motor is influenced by several factors:

  1. Motor Design: The design of the motor, including its core materials, winding configuration, and rotor construction, affects its efficiency. Motors that are designed with low-resistance windings, high-quality magnetic materials, and optimized rotor designs tend to have higher efficiency.
  2. Motor Size: The physical size of the motor can also impact its efficiency. Larger motors generally have higher efficiency because they can dissipate heat more effectively, reducing losses. However, it’s important to select a motor size that matches the application requirements to avoid operating the motor at low efficiency due to underloading.
  3. Operating Conditions: The operating conditions, such as load demand, speed, and temperature, can influence motor efficiency. Motors are typically designed for maximum efficiency at or near their rated load. Operating the motor beyond its rated load or at very light loads can reduce efficiency. Additionally, high ambient temperatures can cause increased losses and reduced efficiency.
  4. Magnetic Losses: AC motors experience losses due to magnetic effects, such as hysteresis and eddy current losses in the core materials. These losses result in heat generation and reduce overall efficiency. Motor designs that minimize magnetic losses through the use of high-quality magnetic materials and optimized core designs can improve efficiency.
  5. Mechanical Friction and Windage Losses: Friction and windage losses in the motor’s bearings, shaft, and rotating parts also contribute to energy losses and reduced efficiency. Proper lubrication, bearing selection, and reducing unnecessary mechanical resistance can help minimize these losses.

Efficiency is an important consideration when selecting an AC motor, as it directly impacts energy consumption and operating costs. Motors with higher efficiency consume less electrical power, resulting in reduced energy bills and a smaller environmental footprint. Additionally, higher efficiency often translates to less heat generation, which can enhance the motor’s reliability and lifespan.

Regulatory bodies and standards organizations, such as the International Electrotechnical Commission (IEC) and the National Electrical Manufacturers Association (NEMA), provide efficiency classes and standards for AC motors, such as IE efficiency classes and NEMA premium efficiency standards. These standards help consumers compare the efficiency levels of different motors and make informed choices to optimize energy efficiency.

In summary, motor efficiency is a measure of how effectively an AC motor converts electrical power into mechanical power. By selecting motors with higher efficiency, users can reduce energy consumption, operating costs, and environmental impact while ensuring reliable and sustainable motor performance.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China Standard in Stock CHINAMFG Original AC Servo Motor Hc-Sfs52   vacuum pump acChina Standard in Stock CHINAMFG Original AC Servo Motor Hc-Sfs52   vacuum pump ac
editor by CX 2024-04-10

China Custom 200W Electric Motor Gear AC Reduction Motor for Automation Equipment a/c vacuum pump

Product Description

Product Overview

NCH horizontal attached single-phase three-phase,aluminum shell (brake) gear reducer motor

When you need a reliable and efficient deceleration motor, MANVAC’s products are your best choice!

Our deceleration motors utilize advanced technologies, ensuring the highest standards of performance and quality. CHINAMFG motors feature high torque, low noise, and long lifespan benefits, making them suitable for various applications.

Whether you need precision control in industrial production or more efficient energy consumption in home appliances, MANVAC’s deceleration motors can easily handle the job. Our products are designed with eco-friendly materials and concepts to help you achieve your energy-saving and environmental goals.

 

CHINAMFG deceleration motors have received high praise and trust from our customers, enabling you to choose our products with peace of mind. Whatever type of deceleration motor you need, CHINAMFG can provide the optimal solution to make your production and life more convenient and efficient

 

FEATURES AT A GLANCE

High precision

 

Small size

 

Large torque

 

Low temperature

 

                       Regular payment                                                              With brake                                                               tailored colour

 

PRODUCT SPECIFICATIONS

CAPACITY

220V

380V

415V

440V

RPM

100W

0.87

0.5

0.32

0.30

1410

200W

1.39

0.8

0.70

0.58

1410

400W

2.4

1.4

1.13

1.07

1420

750W

3.8

2.2

1.94

1.84

1420

1500W

6.9

4.0

3.94

3.30

1430

2200W

9.5

5.5

4.74

4.47

1430

3700W

15.9

9.2

6.93

6.93

1440

5500W

23.5

13.5

1440

 

 

PRODUCT CONFIGURATION

Our factory

 

SIMILAR PRODUCTS

 

 

FAQ

1. What is the warranty of your machine?
R: 1 years, any product itself question,you can contact with us.
2. What is the material of your machine , is oil free?
R: our machine is aluminum alloy, motor is 100% copper coil , of course, we are oil free.
3. How to operate your machine?
R: Connect with wire, and turn on the power, so you can use it directly, about the wiring method, we will tell you how to do
according to your voltage, so at first , you need to tell us your voltage and phase,its important.
4. You are trading company or manufacture?
R: We are manufacture, we can provide long-term supply with fast speed.
5. How to contact with you?
R: You can send messages to me directly by alibaba trade manager, or add me like below

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Gear Reduction Motor
Casing Protection: Protection Type
Number of Poles: 6
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What factors should be considered when selecting an AC motor for a particular application?

When selecting an AC motor for a particular application, several factors need to be considered to ensure the motor meets the requirements and performs optimally. Here are the key factors to consider:

  1. Power Requirements: Determine the power requirements of the application, including the required torque and speed. The motor should have adequate power output to meet the demands of the specific task. Consider factors such as starting torque, running torque, and speed range to ensure the motor can handle the load effectively.
  2. Motor Type: There are different types of AC motors, including induction motors, synchronous motors, and brushless DC motors. Each type has its own characteristics and advantages. Consider the application’s requirements and factors such as speed control, efficiency, and starting torque to determine the most suitable motor type.
  3. Environmental Conditions: Assess the environmental conditions in which the motor will operate. Factors such as temperature, humidity, dust, and vibration levels can impact motor performance and longevity. Choose a motor that is designed to withstand the specific environmental conditions of the application.
  4. Size and Space Constraints: Consider the available space for motor installation. Ensure that the physical dimensions of the motor, including its length, diameter, and mounting arrangement, are compatible with the available space. Additionally, consider the weight of the motor if it needs to be mounted or transported.
  5. Efficiency: Energy efficiency is an important consideration, as it can impact operational costs and environmental sustainability. Look for motors with high efficiency ratings, which indicate that they convert electrical energy into mechanical energy with minimal energy loss. Energy-efficient motors can lead to cost savings and reduced environmental impact over the motor’s lifespan.
  6. Control and Speed Requirements: Determine if the application requires precise speed control or if a fixed speed motor is sufficient. If variable speed control is needed, consider motors that can be easily controlled using variable frequency drives (VFDs) or other speed control mechanisms. For applications that require high-speed operation, select a motor that can achieve the desired speed range.
  7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of the motor. Consider factors such as the accessibility of motor components, ease of maintenance, availability of spare parts, and the manufacturer’s reputation for reliability and customer support. A motor that is easy to maintain and service can help minimize downtime and repair costs.
  8. Budget: Consider the budget constraints for the motor selection. Balance the desired features and performance with the available budget. In some cases, investing in a higher quality, more efficient motor upfront can lead to long-term cost savings due to reduced energy consumption and maintenance requirements.

By carefully considering these factors, it is possible to select an AC motor that aligns with the specific requirements of the application, ensuring optimal performance, efficiency, and reliability.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

How does the speed control mechanism work in AC motors?

The speed control mechanism in AC motors varies depending on the type of motor. Here, we will discuss the speed control methods used in two common types of AC motors: induction motors and synchronous motors.

Speed Control in Induction Motors:

Induction motors are typically designed to operate at a constant speed determined by the frequency of the AC power supply and the number of motor poles. However, there are several methods for controlling the speed of induction motors:

  1. Varying the Frequency: By varying the frequency of the AC power supply, the speed of an induction motor can be adjusted. This method is known as variable frequency drive (VFD) control. VFDs convert the incoming AC power supply into a variable frequency and voltage output, allowing precise control of motor speed. This method is commonly used in industrial applications where speed control is crucial, such as conveyors, pumps, and fans.
  2. Changing the Number of Stator Poles: The speed of an induction motor is inversely proportional to the number of stator poles. By changing the connections of the stator windings or using a motor with a different pole configuration, the speed can be adjusted. However, this method is less commonly used and is typically employed in specialized applications.
  3. Adding External Resistance: In some cases, external resistance can be added to the rotor circuit of an induction motor to control its speed. This method, known as rotor resistance control, involves inserting resistors in series with the rotor windings. By varying the resistance, the rotor current and torque can be adjusted, resulting in speed control. However, this method is less efficient and is mainly used in specific applications where precise control is not required.

Speed Control in Synchronous Motors:

Synchronous motors offer more precise speed control compared to induction motors due to their inherent synchronous operation. The following methods are commonly used for speed control in synchronous motors:

  1. Adjusting the AC Power Frequency: Similar to induction motors, changing the frequency of the AC power supply can control the speed of synchronous motors. By adjusting the power frequency, the synchronous speed of the motor can be altered. This method is often used in applications where precise speed control is required, such as industrial machinery and processes.
  2. Using a Variable Frequency Drive: Variable frequency drives (VFDs) can also be used to control the speed of synchronous motors. By converting the incoming AC power supply into a variable frequency and voltage output, VFDs can adjust the motor speed with high accuracy and efficiency.
  3. DC Field Control: In some synchronous motors, the rotor field is supplied by a direct current (DC) source, allowing for precise control over the motor’s speed. By adjusting the DC field current, the magnetic field strength and speed of the motor can be controlled. This method is commonly used in applications that require fine-tuned speed control, such as industrial processes and high-performance machinery.

These methods provide different ways to control the speed of AC motors, allowing for flexibility and adaptability in various applications. The choice of speed control mechanism depends on factors such as the motor type, desired speed range, accuracy requirements, efficiency considerations, and cost constraints.

China Custom 200W Electric Motor Gear AC Reduction Motor for Automation Equipment   a/c vacuum pump		China Custom 200W Electric Motor Gear AC Reduction Motor for Automation Equipment   a/c vacuum pump
editor by CX 2024-04-10

China Custom ISO9001 Approved Driving Lyhm Carton Dongguan City, China AC Direct Current Motor vacuum pump oil near me

Product Description

Basic parameter
Motor size:Φ28.5mm*30.8mm Shaft core: titanium alloy
Coil wire: high temperature resistant copper Slot pole :12N14P
Output axis: 13.0mm*M5 Lead :20AWG*150MM
Magnet type: Tile Mounting hole: 4*M3*∅16
Winding mode: Single strand Stator diameter :23.0mm

Common problems:
Q: Who are we?
A: We are a specialized manufacturer of drone motors
Q: Can you give me a sample order for the drone motor?
Answer: Yes, the minimum order quantity is low, you can provide 1 sample for testing, but you are responsible for the transportation cost.
Q. What about wait times?
A: Samples take 7-10 days.
Q: How do you ship the goods? How long will it take to get there?
A: We usually ship by air. It usually takes 7-15 days to arrive. Please contact us if you need another mode of transportation before shipping.
Q: Can you support oem and odm?
A: We can provide you with OEM/ODM services.
Q: What is the lead time of the sample?
A: Usually 1-3 weeks.
Q: What is the lead time for mass production?
A: Usually 1 month. It depends on the quantity of your order or other special circumstances.
Q: What are your payment terms?
A: T/T, Western Union and other payment methods are available. Please contact us with the payment method you require before ordering. Payment terms: 30%-50% deposit, balance paid before delivery.
Q: Can my logo be printed on the product?
A. Yes. Please inform and authorize us officially before we produce, and confirm the design according to the sample.
Q: Can I visit your factory before ordering?
A: Yes, welcome to visit our factory. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 14
Customization:
Available

|

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

What are the main components of an AC motor, and how do they contribute to its operation?

An AC motor consists of several key components that work together to facilitate its operation. These components include:

  1. Stator: The stator is the stationary part of an AC motor. It is typically made of a laminated core that provides a path for the magnetic flux. The stator contains stator windings, which are coils of wire wound around the stator core. The stator windings are connected to an AC power source and produce a rotating magnetic field when energized. The rotating magnetic field is a crucial element in generating the torque required for the motor’s operation.
  2. Rotor: The rotor is the rotating part of an AC motor. It is located inside the stator and is connected to a shaft. The rotor can have different designs depending on the type of AC motor. In an induction motor, the rotor does not have electrical connections. Instead, it contains conductive bars or coils that are short-circuited. The rotating magnetic field of the stator induces currents in the short-circuited rotor conductors, creating a magnetic field that interacts with the stator field and generates torque, causing the rotor to rotate. In a synchronous motor, the rotor contains electromagnets that are magnetized by direct current, allowing the rotor to lock onto the rotating magnetic field of the stator and rotate at the same speed.
  3. Bearing: Bearings are used to support and facilitate the smooth rotation of the rotor shaft. They reduce friction and allow the rotor to rotate freely within the motor. Bearings are typically located at both ends of the motor shaft and are designed to withstand the axial and radial forces generated during operation.
  4. End Bells: The end bells, also known as end covers or end brackets, enclose the motor’s stator and rotor assembly. They provide mechanical support and protection for the internal components of the motor. End bells are typically made of metal and are designed to provide a housing for the bearings and secure the motor to its mounting structure.
  5. Fan or Cooling System: AC motors often generate heat during operation. To prevent overheating and ensure proper functioning, AC motors are equipped with fans or cooling systems. These help dissipate heat by circulating air or directing airflow over the motor’s components, including the stator and rotor windings. Effective cooling is crucial for maintaining the motor’s efficiency and extending its lifespan.
  6. Terminal Box or Connection Box: The terminal box is a housing located on the outside of the motor that provides access to the motor’s electrical connections. It contains terminals or connection points where external wires can be connected to supply power to the motor. The terminal box ensures a safe and secure connection of the motor to the electrical system.
  7. Additional Components: Depending on the specific design and application, AC motors may include additional components such as capacitors, centrifugal switches, brushes (in certain types of AC motors), and other control devices. These components are used for various purposes, such as improving motor performance, providing starting assistance, or enabling specific control features.

Each of these components plays a crucial role in the operation of an AC motor. The stator and rotor are the primary components responsible for generating the rotating magnetic field and converting electrical energy into mechanical motion. The bearings ensure smooth rotation of the rotor shaft, while the end bells provide structural support and protection. The fan or cooling system helps maintain optimal operating temperatures, and the terminal box allows for proper electrical connections. Additional components are incorporated as necessary to enhance motor performance and enable specific functionalities.

China Custom ISO9001 Approved Driving Lyhm Carton Dongguan City, China AC Direct Current Motor   vacuum pump oil near me		China Custom ISO9001 Approved Driving Lyhm Carton Dongguan City, China AC Direct Current Motor   vacuum pump oil near me
editor by CX 2024-04-10

China manufacturer Ce Certificate China Manufacturer AC Electric Motor for Beam Trolley supplier

Product Description

End Carriage Crane Motor

RFQ:
1.Are you factory or trade company?
We are a manufacturer with trader over 10 years experience.
2.Do you provide samples?
Yes, we are glad to send you samples for quality checking, if the bulk order is confirmed, sample shipping cost can be refund.
3.I want to add our own logo on product, is it ok ?
Yes, of course. You can put your logo on name plate or cases. We provide OEM/ODM service.
5.What are your payment terms?
T/T , L/C , Wstern Union. You can choose any way you like.
6.How do you ship goods and how long does it take arrive ?
We usually ship by LCL,FCL,TNT or which you like, the delivery time depends on order quantity. 

 

 

G

M

T

 

 

  ()

 

()

 

 

 

 

 

 

 

 

 

200

 

 

 

: : : Donate  

 

G

M

T

 

 

  ()

 

()

 

 

 

 

 

 

 

 

 

200

 

 

 

: : : Donate  

 

G

M

T

 

 

  ()

 

()

 

 

 

 

 

 

 

 

 

200

 

 

 

: : : Donate  

 

G

M

T

 

 

  ()

 

()

 

 

 

 

 

 

 

 

 

200

 

 

 

: : : Donate  

 

 

 

G

M

T

 

 

  ()

 

()

 

 

 

 

 

 

 

 

 

200

 

 

 

: : : Donate  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: 21m/Min
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4,6,12motor Poles
Customization:
Available

|

induction motor

Are there environmental considerations associated with the use of AC motors?

Yes, there are several environmental considerations associated with the use of AC motors. These considerations are primarily related to energy consumption, greenhouse gas emissions, and the disposal of motors at the end of their life cycle. Let’s explore these environmental considerations in detail:

  • Energy Efficiency: AC motors can have varying levels of energy efficiency, which directly impacts their environmental impact. Motors with higher efficiency convert a larger percentage of electrical energy into useful mechanical work, resulting in reduced energy consumption. By selecting and using high-efficiency AC motors, energy usage can be minimized, leading to lower greenhouse gas emissions and reduced reliance on fossil fuels for electricity generation.
  • Greenhouse Gas Emissions: The electricity consumed by AC motors is often produced by power plants that burn fossil fuels, such as coal, natural gas, or oil. The generation of electricity from these fossil fuels releases greenhouse gases, contributing to climate change. By employing energy-efficient motors and optimizing motor systems, businesses and individuals can reduce their electricity demand, leading to lower greenhouse gas emissions and a smaller carbon footprint.
  • Motor Disposal and Recycling: AC motors contain various materials, including metals, plastics, and electrical components. At the end of their life cycle, proper disposal or recycling is important to minimize their environmental impact. Some components, such as copper windings and steel casings, can be recycled, reducing the need for new raw materials and energy-intensive manufacturing processes. It is crucial to follow local regulations and guidelines for the disposal and recycling of motors to prevent environmental pollution and promote resource conservation.
  • Manufacturing and Production: The manufacturing and production processes associated with AC motors can have environmental implications. The extraction and processing of raw materials, such as metals and plastics, can result in habitat destruction, energy consumption, and greenhouse gas emissions. Additionally, the manufacturing processes themselves can generate waste and pollutants. Motor manufacturers can mitigate these environmental impacts by adopting sustainable practices, using recycled materials, reducing waste generation, and implementing energy-efficient production methods.
  • Life Cycle Assessment: Conducting a life cycle assessment (LCA) of AC motors can provide a holistic view of their environmental impact. An LCA considers the environmental aspects associated with the entire life cycle of the motor, including raw material extraction, manufacturing, transportation, use, and end-of-life disposal or recycling. By analyzing the different stages of the motor’s life cycle, stakeholders can identify opportunities for improvement, such as optimizing energy efficiency, reducing emissions, and implementing sustainable practices.

To address these environmental considerations, governments, organizations, and industry standards bodies have developed regulations and guidelines to promote energy efficiency and reduce the environmental impact of AC motors. These include efficiency standards, labeling programs, and incentives for the use of high-efficiency motors. Additionally, initiatives promoting motor system optimization, such as proper motor sizing, maintenance, and control, can further enhance energy efficiency and minimize environmental impact.

In summary, the environmental considerations associated with the use of AC motors include energy efficiency, greenhouse gas emissions, motor disposal and recycling, manufacturing processes, and life cycle assessment. By prioritizing energy efficiency, proper disposal, recycling, and sustainable manufacturing practices, the environmental impact of AC motors can be minimized, contributing to a more sustainable and environmentally conscious approach to motor usage.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

What are the key advantages of using AC motors in industrial applications?

AC motors offer several key advantages that make them highly suitable for industrial applications. Here are some of the main advantages:

  1. Simple and Robust Design: AC motors, particularly induction motors, have a simple and robust design, making them reliable and easy to maintain. They consist of fewer moving parts compared to other types of motors, which reduces the likelihood of mechanical failure and the need for frequent maintenance.
  2. Wide Range of Power Ratings: AC motors are available in a wide range of power ratings, from small fractional horsepower motors to large industrial motors with several megawatts of power. This versatility allows for their application in various industrial processes and machinery, catering to different power requirements.
  3. High Efficiency: AC motors, especially modern designs, offer high levels of efficiency. They convert electrical energy into mechanical energy with minimal energy loss, resulting in cost savings and reduced environmental impact. High efficiency also means less heat generation, contributing to the longevity and reliability of the motor.
  4. Cost-Effectiveness: AC motors are generally cost-effective compared to other types of motors. Their simple construction and widespread use contribute to economies of scale, making them more affordable for industrial applications. Additionally, AC motors often have lower installation and maintenance costs due to their robust design and ease of operation.
  5. Flexible Speed Control: AC motors, particularly induction motors, offer various methods for speed control, allowing for precise adjustment of motor speed to meet specific industrial requirements. Speed control mechanisms such as variable frequency drives (VFDs) enable enhanced process control, energy savings, and improved productivity.
  6. Compatibility with AC Power Grid: AC motors are compatible with the standard AC power grid, which is widely available in industrial settings. This compatibility simplifies the motor installation process and eliminates the need for additional power conversion equipment, reducing complexity and cost.
  7. Adaptability to Various Environments: AC motors are designed to operate reliably in a wide range of environments. They can withstand variations in temperature, humidity, and dust levels commonly encountered in industrial settings. Additionally, AC motors can be equipped with protective enclosures to provide additional resistance to harsh conditions.

These advantages make AC motors a popular choice for industrial applications across various industries. Their simplicity, reliability, cost-effectiveness, energy efficiency, and speed control capabilities contribute to improved productivity, reduced operational costs, and enhanced process control in industrial settings.

China manufacturer Ce Certificate China Manufacturer AC Electric Motor for Beam Trolley   supplier China manufacturer Ce Certificate China Manufacturer AC Electric Motor for Beam Trolley   supplier
editor by CX 2024-04-10

China best Hot Selling Stable Quality 90W 220V Long Shaft Electric AC High Temperature Motor with Good quality

Product Description

Product Description

Features:
1. The high temperature resistant motor adopts fashionable aluminum alloy appearance design and beautiful appearance.
2. The motor uses high-precision bearing brands, special bearing grease, low noise, low vibration, and long bearing life.
3. High-tech design is adopted to reduce the electromagnetic load of the motor and improve the high-performance efficiency
of the motor.
4. The high temperature resistant motor adopts high temperature resistant H-class insulating material to ensure the safe
operation of the motor in a high temperature environment. It will not age or burn out.
5. Adopting advanced thermodynamic analysis method for structural design, using unique “motor heat dissipation” design,
breaking the traditional exhaust-type heat dissipation method. 
6. The shaft is made of chrome steel and stainless steel, which can be customized according to customer requirements.
The shaft can be lengthened and shortened (the shaft can be up to 230mm), and the shaft diameter can be up to 26mm
(1500W high temperature motor)
7. Motor voltage: single-phase 220V, three-phase 220V/380V, 2 poles, other quantities can be customized.

Application:
Widely used in CHINAMFG reflow soldering machines, wave soldering machines, shoe machines, packaging machinery, kitchen
equipment, tunnel furnaces, experimental instruments, oven equipment, high-temperature coating equipment, etc.

Product Parameters

 

Power 90w
Voltage 220V
Current 0.57/0.5A
Rotating speed 2820/3920r/min
Shaft length Can be customized
MOQ 1 piece

Detailed Photos

Our Advantages

 

Packaging & Shipping

 

Company Profile

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Heating Wire Packaging Machine
Speed: High Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Closed Type
Starting Mode: Auto-induction Voltage-reduced Starting
Samples:
US$ 66/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

induction motor

What role do AC motors play in HVAC (heating, ventilation, and air conditioning) systems?

In HVAC (heating, ventilation, and air conditioning) systems, AC motors play a crucial role in various components and functions. These motors are responsible for powering fans, compressors, pumps, and other essential equipment within the HVAC system. Let’s explore the specific roles of AC motors in HVAC systems:

  • Air Handling Units (AHUs) and Ventilation Systems: AC motors drive the fans in AHUs and ventilation systems. These fans draw in fresh air, circulate air within the building, and exhaust stale air. The motors provide the necessary power to move air through the ductwork and distribute it evenly throughout the space. They play a key role in maintaining proper indoor air quality, controlling humidity, and ensuring adequate ventilation.
  • Chillers and Cooling Towers: HVAC systems that use chillers for cooling rely on AC motors to drive the compressor. The motor powers the compressor, which circulates refrigerant through the system, absorbing heat from the indoor environment and releasing it outside. AC motors are also used in cooling towers, which dissipate heat from the chiller system by evaporating water. The motors drive the fans that draw air through the cooling tower and enhance heat transfer.
  • Heat Pumps: AC motors are integral components of heat pump systems, which provide both heating and cooling. The motor drives the compressor in the heat pump, enabling the transfer of heat between the indoor and outdoor environments. During cooling mode, the motor circulates refrigerant to extract heat from indoors and release it outside. In heating mode, the motor reverses the refrigerant flow to extract heat from the outdoor air or ground and transfer it indoors.
  • Furnaces and Boilers: In heating systems, AC motors power the blowers or fans in furnaces and boilers. The motor drives the blower to distribute heated air or steam throughout the building. This helps maintain a comfortable indoor temperature and ensures efficient heat distribution in the space.
  • Pumps and Circulation Systems: HVAC systems often incorporate pumps for water circulation, such as in hydronic heating or chilled water systems. AC motors drive these pumps, providing the necessary pressure to circulate water or other heat transfer fluids through the system. The motors ensure efficient flow rates and contribute to the effective transfer of thermal energy.
  • Dampers and Actuators: AC motors are used in HVAC systems to control airflow and regulate the position of dampers and actuators. These motors enable the adjustment of airflow rates, temperature control, and zone-specific climate control. By modulating the motor speed or position, HVAC systems can achieve precise control of air distribution and temperature in different areas of a building.

AC motors in HVAC systems are designed to meet specific performance requirements, such as variable speed control, energy efficiency, and reliable operation under varying loads. Maintenance and regular inspection of these motors are essential to ensure optimal performance, energy efficiency, and longevity of the HVAC system.

In conclusion, AC motors play vital roles in HVAC systems by powering fans, compressors, pumps, and actuators. They enable proper air circulation, temperature control, and efficient transfer of heat, contributing to the overall comfort, air quality, and energy efficiency of buildings.

induction motor

What are the common signs of AC motor failure, and how can they be addressed?

AC motor failure can lead to disruptions in various industrial and commercial applications. Recognizing the common signs of motor failure is crucial for timely intervention and preventing further damage. Here are some typical signs of AC motor failure and potential ways to address them:

  • Excessive Heat: Excessive heat is a common indicator of motor failure. If a motor feels excessively hot to the touch or emits a burning smell, it could signify issues such as overloaded windings, poor ventilation, or bearing problems. To address this, first, ensure that the motor is properly sized for the application. Check for obstructions around the motor that may be impeding airflow and causing overheating. Clean or replace dirty or clogged ventilation systems. If the issue persists, consult a qualified technician to inspect the motor windings and bearings and make any necessary repairs or replacements.
  • Abnormal Noise or Vibration: Unusual noises or vibrations coming from an AC motor can indicate various problems. Excessive noise may be caused by loose or damaged components, misaligned shafts, or worn bearings. Excessive vibration can result from imbalanced rotors, misalignment, or worn-out motor parts. Addressing these issues involves inspecting and adjusting motor components, ensuring proper alignment, and replacing damaged or worn-out parts. Regular maintenance, including lubrication of bearings, can help prevent excessive noise and vibration and extend the motor’s lifespan.
  • Intermittent Operation: Intermittent motor operation, where the motor starts and stops unexpectedly or fails to start consistently, can be a sign of motor failure. This can be caused by issues such as faulty wiring connections, damaged or worn motor brushes, or problems with the motor’s control circuitry. Check for loose or damaged wiring connections and make any necessary repairs. Inspect and replace worn or damaged motor brushes. If the motor still exhibits intermittent operation, it may require professional troubleshooting and repair by a qualified technician.
  • Overheating or Tripping of Circuit Breakers: If an AC motor consistently causes circuit breakers to trip or if it repeatedly overheats, it indicates a problem that needs attention. Possible causes include high starting currents, excessive loads, or insulation breakdown. Verify that the motor is not overloaded and that the load is within the motor’s rated capacity. Check the motor’s insulation resistance to ensure it is within acceptable limits. If these measures do not resolve the issue, consult a professional to assess the motor and its electrical connections for any faults or insulation breakdown that may require repair or replacement.
  • Decreased Performance or Efficiency: A decline in motor performance or efficiency can be an indication of impending failure. This may manifest as reduced speed, decreased torque, increased energy consumption, or inadequate power output. Factors contributing to decreased performance can include worn bearings, damaged windings, or deteriorated insulation. Regular maintenance, including lubrication and cleaning, can help prevent these issues. If performance continues to decline, consult a qualified technician to inspect the motor and perform any necessary repairs or replacements.
  • Inoperative Motor: If an AC motor fails to operate entirely, there may be an issue with the power supply, control circuitry, or internal motor components. Check the power supply and connections for any faults or interruptions. Inspect control circuitry, such as motor starters or contactors, for any damage or malfunction. If no external faults are found, it may be necessary to dismantle the motor and inspect internal components, such as windings or brushes, for any faults or failures that require repair or replacement.

It’s important to note that motor failure causes can vary depending on factors such as motor type, operating conditions, and maintenance practices. Regular motor maintenance, including inspections, lubrication, and cleaning, is essential for early detection of potential failure signs and for addressing issues promptly. When in doubt, it is advisable to consult a qualified electrician, motor technician, or manufacturer’s guidelines for appropriate troubleshooting and repair procedures specific to the motor model and application.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China best Hot Selling Stable Quality 90W 220V Long Shaft Electric AC High Temperature Motor   with Good quality China best Hot Selling Stable Quality 90W 220V Long Shaft Electric AC High Temperature Motor   with Good quality
editor by CX 2024-04-10